Plant RNA Binding Proteins as Critical Modulators in Drought, High Salinity, Heat, and Cold Stress Responses: An Updated Overview

Plant abiotic stress responses are tightly regulated by different players at multiple levels. At transcriptional or post-transcriptional levels, several RNA binding proteins (RBPs) regulate stress response genes through RNA metabolism. They are increasingly recognized as critical modulators of a myr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-07, Vol.22 (13), p.6731
Hauptverfasser: Muthusamy, Muthusamy, Kim, Jong-Hee, Kim, Jin A, Lee, Soo-In
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plant abiotic stress responses are tightly regulated by different players at multiple levels. At transcriptional or post-transcriptional levels, several RNA binding proteins (RBPs) regulate stress response genes through RNA metabolism. They are increasingly recognized as critical modulators of a myriad of biological processes, including stress responses. Plant RBPs are heterogeneous with one or more conservative RNA motifs that constitute canonical/novel RNA binding domains (RBDs), which can bind to target RNAs to determine their regulation as per the plant requirements at given environmental conditions. Given its biological significance and possible consideration as a potential tool in genetic manipulation programs to improve key agronomic traits amidst frequent episodes of climate anomalies, studies concerning the identification and functional characterization of RBP candidate genes are steadily mounting. This paper presents a comprehensive overview of canonical and novel RBPs and their functions in major abiotic stresses including drought, heat, salt, and cold stress conditions. To some extent, we also briefly describe the basic motif structure of RBPs that would be useful in forthcoming studies. Additionally, we also collected RBP genes that were modulated by stress, but that lacked functional characterization, providing an impetus to conduct further research.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22136731