Enhanced Sensing Ability of Brush-Like Fe2O3-ZnO Nanostructures towards NO2 Gas via Manipulating Material Synergistic Effect
Brush-like α-Fe2O3–ZnO heterostructures were synthesized through a sputtering ZnO seed-assisted hydrothermal growth method. The resulting heterostructures consisted of α-Fe2O3 rod templates and ZnO branched crystals with an average diameter of approximately 12 nm and length of 25 nm. The gas-sensing...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2021-07, Vol.22 (13), p.6884 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Brush-like α-Fe2O3–ZnO heterostructures were synthesized through a sputtering ZnO seed-assisted hydrothermal growth method. The resulting heterostructures consisted of α-Fe2O3 rod templates and ZnO branched crystals with an average diameter of approximately 12 nm and length of 25 nm. The gas-sensing results demonstrated that the α-Fe2O3–ZnO heterostructure-based sensor exhibited excellent sensitivity, selectivity, and stability toward low-concentration NO2 gas at an optimal temperature of 300 °C. The α-Fe2O3–ZnO sensor, in particular, demonstrated substantially higher sensitivity compared with pristine α-Fe2O3, along with faster response and recovery speeds under similar test conditions. An appropriate material synergic effect accounts for the considerable enhancement in the NO2 gas-sensing performance of the α-Fe2O3–ZnO heterostructures. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms22136884 |