Sources of SARS-CoV-2 and Other Microorganisms in Dental Aerosols

On March 16, 2020, 198,000 dentists in the United States closed their doors to patients, fueled by concerns that aerosols generated during dental procedures are potential vehicles for transmission of respiratory pathogens through saliva. Our knowledge of these aerosol constituents is sparse and glea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dental research 2021-07, Vol.100 (8), p.817-823
Hauptverfasser: Meethil, A.P., Saraswat, S., Chaudhary, P.P., Dabdoub, S.M., Kumar, P.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On March 16, 2020, 198,000 dentists in the United States closed their doors to patients, fueled by concerns that aerosols generated during dental procedures are potential vehicles for transmission of respiratory pathogens through saliva. Our knowledge of these aerosol constituents is sparse and gleaned from case reports and poorly controlled studies. Therefore, we tracked the origins of microbiota in aerosols generated during ultrasonic scaling, implant osteotomy, and restorative procedures by combining reverse transcriptase quantitative polymerase chain reaction (to identify and quantify SARS-CoV-2) and 16S sequencing (to characterize the entire microbiome) with fine-scale enumeration and source tracking. Linear discriminant analysis of Bray-Curtis dissimilarity distances revealed significant class separation between the salivary microbiome and aerosol microbiota deposited on the operator, patient, assistant, or the environment (P < 0.01, analysis of similarities). We also discovered that 78% of the microbiota in condensate could be traced to the dental irrigant, while saliva contributed to a median of 0% of aerosol microbiota. We also identified low copy numbers of SARS-CoV-2 virus in the saliva of several asymptomatic patients but none in aerosols generated from these patients. Together, the bacterial and viral data encourage us to conclude that when infection control measures are used, such as preoperative mouth rinses and intraoral high-volume evacuation, dental treatment is not a factor in increasing the risk for transmission of SARS-CoV-2 in asymptomatic patients and that standard infection control practices are sufficiently capable of protecting personnel and patients from exposure to potential pathogens. This information is of immediate urgency, not only for safe resumption of dental treatment during the ongoing COVID-19 pandemic, but also to inform evidence-based selection of personal protection equipment and infection control practices at a time when resources are stretched and personal protection equipment needs to be prioritized.
ISSN:0022-0345
1544-0591
1544-0591
DOI:10.1177/00220345211015948