Flow field around bubbles on formation of air embolism in small vessels
An air embolism is induced by intravascular bubbles that block the blood flow in vessels, which causes a high risk of pulmonary hypertension and myocardial and cerebral infarction. However, it is still unclear how a moving bubble is stopped in the blood flow to form an air embolism in small vessels....
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-06, Vol.118 (26), p.1-6 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An air embolism is induced by intravascular bubbles that block the blood flow in vessels, which causes a high risk of pulmonary hypertension and myocardial and cerebral infarction. However, it is still unclear how a moving bubble is stopped in the blood flow to form an air embolism in small vessels. In this work, microfluidic experiments, in vivo and in vitro, are performed in small vessels, where bubbles are seen to deform and stop gradually in the flow. A clot is always found to originate at the tail of a moving bubble, which is attributed to the special flow field around the bubble. As the clot grows, it breaks the lubrication film between the bubble and the channel wall; thus, the friction force is increased to stop the bubble. This study illustrates the stopping process of elongated bubbles in small vessels and brings insight into the formation of air embolism. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.2025406118 |