The Effects of Nonnutritive Sweeteners on the Cariogenic Potential of Oral Microbiome
Nonnutritive sweeteners (NNSs) are sugar substitutes widely used to reduce the negative health effects of excessive sugar consumption. Dental caries, one of the most prevalent chronic diseases globally, results from a pathogenic biofilm with microecological imbalance and frequent exposure to sugars....
Gespeichert in:
Veröffentlicht in: | BioMed research international 2021, Vol.2021 (1), p.9967035-9967035 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nonnutritive sweeteners (NNSs) are sugar substitutes widely used to reduce the negative health effects of excessive sugar consumption. Dental caries, one of the most prevalent chronic diseases globally, results from a pathogenic biofilm with microecological imbalance and frequent exposure to sugars. Some research has shown that certain NNSs possess less cariogenic potential than sucrose, indicating their putative effect on oral microbiome. To uncover the alterations of acidogenic pathogens and alkali-generating commensals, as well as the biofilm cariogenic potential under the influence of NNSs, we selected four common NNSs (acesulfame-K, aspartame, saccharin, and sucralose) and established single-, dual-, and multispecies in vitro culture model to assess their effects on Streptococcus mutans (S. mutans) and/or Streptococcus sanguinis (S. sanguinis) compared to sucrose with the same sweetness. The results showed that NNSs significantly suppressed the planktonic growth, acid production, and biofilm formation of S. mutans or S. sanguinis compared with sucrose in single-species cultures. Additionally, decreased S. mutans/S. sanguinis ratio, less EPS generation, and higher pH value were observed in dual-species and saliva-derived multispecies biofilms with supplementary NNSs. Collectively, this study demonstrates that NNSs inhibit the cariogenic potential of biofilms by maintaining microbial equilibrium, thus having a promising prospect as anticaries agents. |
---|---|
ISSN: | 2314-6133 2314-6141 |
DOI: | 10.1155/2021/9967035 |