Serum Erythroferrone During Pregnancy Is Related to Erythropoietin but Does Not Predict the Risk of Anemia
Maintaining adequate iron status during pregnancy is important for the mother and her developing fetus. Iron homeostasis is influenced by 3 regulatory hormones: erythropoietin (EPO), hepcidin, and erythroferrone (ERFE). To date, normative data on ERFE across pregnancy and its relations to other horm...
Gespeichert in:
Veröffentlicht in: | The Journal of nutrition 2021-07, Vol.151 (7), p.1824-1833 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Maintaining adequate iron status during pregnancy is important for the mother and her developing fetus. Iron homeostasis is influenced by 3 regulatory hormones: erythropoietin (EPO), hepcidin, and erythroferrone (ERFE). To date, normative data on ERFE across pregnancy and its relations to other hormones and iron status indicators are limited.
The objective of this study was to characterize maternal ERFE across pregnancy and at delivery and evaluate the utility of hepcidin, ERFE, and EPO in identifying women with increased iron needs.
ERFE was measured in extant serum samples collected from 2 longitudinal cohorts composed of women carrying multiple fetuses (n = 79) and pregnant adolescents (n = 218) at midgestation (∼26 wk) and delivery (∼39 wk). Receiver operating characteristic curves were generated to characterize the predictive ability of serum ERFE, hepcidin, and EPO and their ratios to identify women at increased risk of iron deficiency and anemia.
In these pregnant women, mean ERFE was 0.48 ng/mL at both ∼25 wk of gestation and at delivery. ERFE was positively associated with EPO at midgestation (β = 0.14, P = 0.002, n = 202) and delivery (β = 0.12, P < 0.001, n = 225) but was not significantly associated with maternal hepcidin at any time point surveyed. Of all hormones measured at midgestation and delivery, EPO was best able to identify women with anemia (AUC: 0.86 and 0.75, respectively) and depleted iron stores (AUC: 0.77 and 0.84), whereas the hepcidin-to-EPO ratio was best able to identify women with iron deficiency anemia (AUC: 0.85 and 0.84).
Maternal ERFE was significantly associated with EPO but was not able to identify women with gestational iron deficiency. At term, the hepcidin-to-EPO ratio, an index that accounts for both iron status and erythropoietic demand, and EPO were the strongest indicators of maternal iron deficiency and anemia. This trial was registered at >http://clinicaltrials.gov as NCT04517734 (>https://clinicaltrials.gov/ct2/show/NCT04517734). |
---|---|
ISSN: | 0022-3166 1541-6100 |
DOI: | 10.1093/jn/nxab093 |