Exosomes of adult human fibroblasts cultured on 3D silk fibroin nonwovens intensely stimulate neoangiogenesis

Abstract Background Bombyx mori silk fibroin is a biomacromolecule that allows the assembly of scaffolds for tissue engineering and regeneration purposes due to its cellular adhesiveness, high biocompatibility and low immunogenicity. Earlier work showed that two types of 3D silk fibroin nonwovens (3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Burns and trauma 2021-01, Vol.9, p.tkab003-tkab003
Hauptverfasser: Hu, Peng, Chiarini, Anna, Wu, Jun, Freddi, Giuliano, Nie, Kaiyu, Armato, Ubaldo, Prà, Ilaria Dal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background Bombyx mori silk fibroin is a biomacromolecule that allows the assembly of scaffolds for tissue engineering and regeneration purposes due to its cellular adhesiveness, high biocompatibility and low immunogenicity. Earlier work showed that two types of 3D silk fibroin nonwovens (3D-SFnws) implanted into mouse subcutaneous tissue were promptly vascularized via undefined molecular mechanisms. The present study used nontumorigenic adult human dermal fibroblasts (HDFs) adhering to a third type of 3D-SFnws to assess whether HDFs release exosomes whose contents promote neoangiogenesis. Methods Electron microscopy imaging and physical tests defined the features of the novel carded/hydroentangled 3D-SFnws. HDFs were cultured on 3D-SFnws and polystyrene plates in an exosome-depleted medium. DNA amounts and D-glucose consumption revealed the growth and metabolic activities of HDFs on 3D-SFnws. CD9-expressing total exosome fractions were from conditioned media of 3D-SFnws and 2D polystyrene plates HDF cultures. Angiogenic growth factors (AGFs) in equal amounts of the two groups of exosomal proteins were analysed via double-antibody arrays. A tube formation assay using human dermal microvascular endothelial cells (HDMVECs) was used to evaluate the exosomes’ angiogenic power. Results The novel features of the 3D-SFnws met the biomechanical requirements typical of human soft tissues. By experimental day 15, 3D-SFnws-adhering HDFs had increased 4.5-fold in numbers and metabolized 5.4-fold more D-glucose than at day 3 in vitro. Compared to polystyrene-stuck HDFs, exosomes from 3D-SFnws-adhering HDFs carried significantly higher amounts of AGFs, such as interleukin (IL)-1α, IL-4 and IL-8; angiopoietin-1 and angiopoietin-2; angiopoietin-1 receptor (or Tie-2); growth-regulated oncogene (GRO)-α, GRO-β and GRO-γ; matrix metalloproteinase-1; tissue inhibitor metalloproteinase-1; and urokinase-type plasminogen activator surface receptor, but lesser amounts of anti-angiogenic tissue inhibitor metalloproteinase-2 and pro-inflammatory monocyte chemoattractant protein-1. At concentrations from 0.62 to 10 μg/ml, the exosomes from 3D-SFnws-cultured HDFs proved their angiogenic power by inducing HDMVECs to form significant amounts of tubes in vitro. Conclusions The structural and mechanical properties of carded/hydroentangled 3D-SFnws proved their suitability for tissue engineering and regeneration applications. Consistent with our hypothesis, 3D-SFnws-adhering HDFs
ISSN:2321-3868
2321-3876
2321-3876
DOI:10.1093/burnst/tkab003