Phylogeny and Comparative Analysis for the Plastid Genomes of Five Tulipa (Liliaceae)

Species of Tulipa (Liliaceae) are of great horticultural importance and are distributed across Europe, North Africa, and Asia. The Tien Shan Mountain is one of the primary diversity centres of Tulipa, but the molecular studies of Tulipa species from this location are lacking. In our study, we assemb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2021, Vol.2021 (1), p.6648429-6648429
Hauptverfasser: Li, Juan, Price, Megan, Su, Dan-Mei, Zhang, Zhen, Yu, Yan, Xie, Deng-Feng, Zhou, Song-Dong, He, Xing-Jin, Gao, Xin-Fen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Species of Tulipa (Liliaceae) are of great horticultural importance and are distributed across Europe, North Africa, and Asia. The Tien Shan Mountain is one of the primary diversity centres of Tulipa, but the molecular studies of Tulipa species from this location are lacking. In our study, we assembled four Tulipa plastid genomes from the Tien Shan Mountains, T. altaica, T. iliensis, T. patens, and T. thianschanica, combined with the plastid genome of T. sylvestris to compare against other Liliaceae plastid genomes. We focussed on the species diversity and evolution of their plastid genomes. The five Tulipa plastid genomes proved highly similar in overall size (151,691–152,088 bp), structure, gene order, and content. With comparative analysis, we chose 7 mononucleotide SSRs from the Tulipa species that could be used in further population studies. Phylogenetic analyses based on 24 plastid genomes robustly supported the monophyly of Tulipa and the sister relationship between Tulipa and Amana, Erythronium. T. iliensis, T. thianschanica, and T. altaica were clustered together, and T. patens was clustered with T. sylvestris, with our results clearly demonstrating the relationships between these five Tulipa species. Our results provide a more comprehensive understanding of the phylogenomics and comparative genomics of Tulipa.
ISSN:2314-6133
2314-6141
DOI:10.1155/2021/6648429