A Novel Regulator Participating in Nitrogen Removal Process of Bacillus subtilis JD-014

Aerobic denitrification is considered as a promising biological method to eliminate the nitrate contaminants in waterbodies. However, the molecular mechanism of this process varies in different functional bacteria. In this study, the nitrogen removal characteristics for a newly isolated aerobic deni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-06, Vol.22 (12), p.6543, Article 6543
Hauptverfasser: Yang, Ting, Shi, Yi, Yang, Qian, Xin, Yu, Gu, Zhenghua, Zhang, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aerobic denitrification is considered as a promising biological method to eliminate the nitrate contaminants in waterbodies. However, the molecular mechanism of this process varies in different functional bacteria. In this study, the nitrogen removal characteristics for a newly isolated aerobic denitrifier Bacillus subtilis JD-014 were investigated, and the potential functional genes involved in the aerobic denitrification process were further screened through transcriptome analysis. JD-014 exhibited efficient denitrification performance when having sodium succinate as the carbon source with the range of nitrate concentration between 50 and 300 mg/L. Following the transcriptome data, most of the up-regulated differentially expressed genes (DEGs) were associated with cell motility, carbohydrate metabolism, and energy metabolism. Moreover, gene nirsir annotated as sulfite reductase was screened out and further identified as a regulator participating in the nitrogen removal process within JD-014. The findings in present study provide meaningful information in terms of a comprehensive understanding of genetic regulation of nitrogen metabolism, especially for Bacillus strains.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22126543