Mechanism of validamycin A inhibiting DON biosynthesis and synergizing with DMI fungicides against Fusarium graminearum

Deoxynivalenol (DON) is a vital virulence factor of Fusarium graminearum, which causes Fusarium head blight (FHB). We recently found that validamycin A (VMA), an aminoglycoside antibiotic, can be used to control FHB and inhibit DON contamination, but its molecular mechanism is still unclear. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant pathology 2021-07, Vol.22 (7), p.769-785
Hauptverfasser: Bian, Chuanhong, Duan, Yabing, Xiu, Qian, Wang, Jueyu, Tao, Xian, Zhou, Mingguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deoxynivalenol (DON) is a vital virulence factor of Fusarium graminearum, which causes Fusarium head blight (FHB). We recently found that validamycin A (VMA), an aminoglycoside antibiotic, can be used to control FHB and inhibit DON contamination, but its molecular mechanism is still unclear. In this study, we found that both neutral and acid trehalase (FgNTH and FgATH) are the targets of VMA in F. graminearum, and the deficiency of FgNTH and FgATH reduces the sensitivity to VMA by 2.12‐ and 1.79‐fold, respectively, indicating that FgNTH is the main target of VMA. We found FgNTH is responsible for vegetative growth, FgATH is critical to sexual reproduction, and both of them play an important role in conidiation and virulence in F. graminearum. We found that FgNTH resided in the cytoplasm, affected the localization of FgATH, and positively regulated DON biosynthesis; however, FgATH resided in vacuole and negatively regulated DON biosynthesis. FgNTH interacted with FgPK (pyruvate kinase), a key enzyme in glycolysis, and the interaction was reduced by VMA; the deficiency of FgNTH affected the localization of FgPK under DON induction condition. Strains with a deficiency of FgNTH were more sensitive to demethylation inhibitor (DMI) fungicides. FgNTH regulated the expression level of FgCYP51A and FgCYP51B by interacting with FgCYP51B. Taken together, VMA inhibits DON biosynthesis by targeting FgNTH and reducing the interaction between FgNTH and FgPK, and synergizes with DMI fungicides against F. graminearum by decreasing FgCYP51A and FgCYP51B expression. VMA inhibits DON biosynthesis by reducing the interaction between FgNTH and FgPK, and synergizes with demethylation inhibitor fungicides against Fusarium graminearum via the interaction between FgNTH with FgCYP51B.
ISSN:1464-6722
1364-3703
DOI:10.1111/mpp.13060