Pathway Complexity in Supramolecular Porphyrin Self-Assembly at an Immiscible Liquid–Liquid Interface

Nanostructures that are inaccessible through spontaneous thermodynamic processes may be formed by supramolecular self-assembly under kinetic control. In the past decade, the dynamics of pathway complexity in self-assembly have been elucidated through kinetic models based on aggregate growth by seque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-06, Vol.143 (24), p.9060-9069
Hauptverfasser: Robayo-Molina, Iván, Molina-Osorio, Andrés F, Guinane, Luke, Tofail, Syed A. M, Scanlon, Micheál D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanostructures that are inaccessible through spontaneous thermodynamic processes may be formed by supramolecular self-assembly under kinetic control. In the past decade, the dynamics of pathway complexity in self-assembly have been elucidated through kinetic models based on aggregate growth by sequential monomer association and dissociation. Immiscible liquid–liquid interfaces are an attractive platform to develop well-ordered self-assembled nanostructures, unattainable in bulk solution, due to the templating interaction of the interface with adsorbed molecules. Here, we report time-resolved in situ UV–vis spectroscopic observations of the self-assembly of zinc­(II) meso-tetrakis­(4-carboxyphenyl)­porphyrin (ZnTPPc) at an immiscible aqueous–organic interface. We show that the kinetically favored metastable J-type nanostructures form quickly, but then transform into stable thermodynamically favored H-type nanostructures. Numerical modeling revealed two parallel and competing cooperative pathways leading to the different porphyrin nanostructures. These insights demonstrate that pathway complexity is not unique to self-assembly processes in bulk solution and is equally valid for interfacial self-assembly. Subsequently, the interfacial electrostatic environment was tuned using a kosmotropic anion (citrate) in order to influence the pathway selection. At high concentrations, interfacial nanostructure formation was forced completely down the kinetically favored pathway, and only J-type nanostructures were obtained. Furthermore, we found by atomic force microscopy and scanning electron microscopy that the J- and H-type nanostructures obtained at low and high citric acid concentrations, respectively, are morphologically distinct, which illustrates the pathway-dependent material properties.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.1c02481