Gait training using a hybrid assistive limb after botulinum toxin treatment for cerebral palsy: a case report
[Purpose] Hybrid Assistive Limb® (HAL; Cyberdyne, Tsukuba, Japan) is a wearable robot that assists patients based on their voluntary movements. We report gait training with HAL after botulinum toxin treatment for spasticity of the lower limb in cerebral palsy (CP). [Participant and Methods] The part...
Gespeichert in:
Veröffentlicht in: | Journal of Physical Therapy Science 2021, Vol.33(6), pp.499-504 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Purpose] Hybrid Assistive Limb® (HAL; Cyberdyne, Tsukuba, Japan) is a wearable robot that assists patients based on their voluntary movements. We report gait training with HAL after botulinum toxin treatment for spasticity of the lower limb in cerebral palsy (CP). [Participant and Methods] The participant was a 36 year-old male with spastic diplegia due to periventricular leukomalacia, with Gross Motor Function Classification System (GMFCS) level II. HAL training was performed in 20-minute sessions (3 sessions/week for 4 weeks). The outcome measures were range of motion, spasticity, walking ability, muscle strength, gross motor function measure (GMFM), Canadian Occupational Performance Measure (COPM), and Pediatric Evaluation of Disability Inventory measured before, immediately after, and one, two, and three months after HAL training. [Results] No adverse events were observed during training. After the HAL intervention, gait speed, step length, cadence, 6-min walking distance (6MD), knee extension strength, GMFM, and COPM increased, and Physiological Cost Index declined. Three months post-intervention, gait speed, step length, cadence, 6MD, and GMFM remained higher than those observed within the first two months. [Conclusion] Gait training with HAL can be a safe and feasible method for patients with CP who undergo botulinum toxin treatment to improve walking ability and motor function. |
---|---|
ISSN: | 0915-5287 2187-5626 |
DOI: | 10.1589/jpts.33.499 |