Mycorrhizal symbiosis primes the accumulation of antiherbivore compounds and enhances herbivore mortality in tomato

Abstract Plant association with arbuscular mycorrhizal fungi (AMF) can increase their ability to overcome multiple stresses, but their impact on plant interactions with herbivorous insects is controversial. Here we show higher mortality of the leaf-chewer Spodoptera exigua when fed on tomato plants...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 2021-06, Vol.72 (13), p.5038-5050
Hauptverfasser: Rivero, Javier, Lidoy, Javier, Llopis-Giménez, Ángel, Herrero, Salvador, Flors, Víctor, Pozo, María J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Plant association with arbuscular mycorrhizal fungi (AMF) can increase their ability to overcome multiple stresses, but their impact on plant interactions with herbivorous insects is controversial. Here we show higher mortality of the leaf-chewer Spodoptera exigua when fed on tomato plants colonized by the AMF Funneliformis mosseae, evidencing mycorrhiza-induced resistance. In search of the underlying mechanisms, an untargeted metabolomic analysis through ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS) was performed. The results showed that mycorrhizal symbiosis had a very limited impact on the leaf metabolome in the absence of stress, but significantly modulated the response to herbivory in the damaged area. A cluster of over accumulated metabolites was identified in those leaflets damaged by S. exigua feeding in mycorrhizal plants, while unwounded distal leaflets responded similar to those from non-mycorrhizal plants. These primed-compounds were mostly related to alkaloids, fatty acid derivatives and phenylpropanoid-polyamine conjugates. The deleterious effect on larval survival of some of these compounds, including the alkaloid physostigmine, the fatty acid derivatives 4-oxododecanedioic acid and azelaic acid, was confirmed. Thus, our results evidence the impact of AMF on metabolic reprograming upon herbivory that leads to a primed accumulation of defensive compounds. Mycorrhizal symbiosis primes the accumulation of several antiherbivore compounds in response to Spodoptera exigua attack, increasing larval mortality.
ISSN:0022-0957
1460-2431
DOI:10.1093/jxb/erab171