Development of a Broth Microdilution Method for Exebacase Susceptibility Testing

Exebacase (CF-301) belongs to a new class of protein-based antibacterial agents, known as lysins (peptidoglycan hydrolases). Exebacase, a novel lysin with antistaphylococcal activity, is in phase 3 of clinical development. To advance into the clinic, it was necessary to develop an accurate and repro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antimicrobial agents and chemotherapy 2021-06, Vol.65 (7), p.e0258720-e0258720
Hauptverfasser: Oh, Jun T, Ambler, Jane E, Cassino, Cara, Schuch, Raymond
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exebacase (CF-301) belongs to a new class of protein-based antibacterial agents, known as lysins (peptidoglycan hydrolases). Exebacase, a novel lysin with antistaphylococcal activity, is in phase 3 of clinical development. To advance into the clinic, it was necessary to develop an accurate and reproducible method for exebacase MIC determination. The Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution (BMD) method using cation-adjusted Mueller-Hinton broth (CAMHB) produced trailing MIC endpoints, and exebacase activity was diminished when frozen BMD panels were used. A modified BMD method was developed using CAMHB supplemented with 25% horse serum and 0.5 mM dl-dithiothreitol (CAMHB-HSD). Preliminary quality control (QC) ranges for Staphylococcus aureus ATCC 29213 of 0.25 to 1 μg/ml and for Enterococcus faecalis ATCC 29212 of 16 to 64 μg/ml were determined based on the results of a CLSI M23-defined MIC QC tier 1 study. These preliminary QC ranges validated the MIC data generated from a systematic study testing a discrete S. aureus strain collection using CAMHB-HSD to investigate the impact of parameters known to influence susceptibility test results and to evaluate the exebacase MIC distribution against clinical S. aureus isolates. Presentation of these data led to the CLSI Subcommittee on Antimicrobial Susceptibility Testing (AST) approval of the use of CAMHB-HSD to determine exebacase susceptibility and commencement of a multilaboratory (tier 2) QC study. Use of a standard BMD method and concomitant QC testing provides confidence in the assessment of test performance to generate accurate and reproducible susceptibility data during antibacterial drug development.
ISSN:0066-4804
1098-6596
DOI:10.1128/AAC.02587-20