The Scent of Ant Brood: Caste Differences in Surface Hydrocarbons of Formica exsecta Pupae

Chemical communication is common across all organisms. Insects in particular use predominantly chemical stimuli in assessing their environment and recognizing their social counterparts. One of the chemical stimuli used for recognition in social insects, such as ants, is the suite of long-chain, cuti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical ecology 2021-06, Vol.47 (6), p.513-524
Hauptverfasser: Pulliainen, Unni, Bos, Nick, d’Ettorre, Patrizia, Sundström, Liselotte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemical communication is common across all organisms. Insects in particular use predominantly chemical stimuli in assessing their environment and recognizing their social counterparts. One of the chemical stimuli used for recognition in social insects, such as ants, is the suite of long-chain, cuticular hydrocarbons. In addition to providing waterproofing, these surface hydrocarbons serve as a signature mixture, which ants can perceive, and use to distinguish between strangers and colony mates, and to determine caste, sex, and reproductive status of another individual. They can be both environmentally and endogenously acquired. The surface chemistry of adult workers has been studied extensively in ants, yet the pupal stage has rarely been considered. Here we characterized the surface chemistry of pupae of Formica exsecta , and examine differences among sexes, castes (reproductive vs. worker), and types of sample (developing individual vs. cocoon envelope). We found quantitative and qualitative differences among both castes and types of sample, but male and female reproductives did not differ in their surface chemistry. We also found that the pupal surface chemistry was more complex than that of adult workers in this species. These results improve our understanding of the information on which ants base recognition, and highlights the diversity of surface chemistry in social insects across developmental stages.
ISSN:0098-0331
1573-1561
DOI:10.1007/s10886-021-01275-w