New DNA-hydrolyzing DNAs isolated from an ssDNA library carrying a terminal hybridization stem

Abstract DNA-hydrolyzing DNAs represent an attractive type of DNA-processing catalysts distinctive from the protein-based restriction enzymes. The innate DNA property has enabled them to readily join DNA-based manipulations to promote the development of DNA biotechnology. A major in vitro selection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2021-06, Vol.49 (11), p.6364-6374
Hauptverfasser: Zhang, Canyu, Li, Qingting, Xu, Tianbin, Li, Wei, He, Yungang, Gu, Hongzhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract DNA-hydrolyzing DNAs represent an attractive type of DNA-processing catalysts distinctive from the protein-based restriction enzymes. The innate DNA property has enabled them to readily join DNA-based manipulations to promote the development of DNA biotechnology. A major in vitro selection strategy to identify these DNA catalysts relies tightly on the isolation of linear DNAs processed from a circular single-stranded (ss) DNA sequence library by self-hydrolysis. Herein, we report that by programming a terminal hybridization stem in the library, other than the previously reported classes (I & II) of deoxyribozymes, two new classes (III & IV) were identified with the old selection strategy to site-specifically hydrolyze DNA in the presence of Zn2+. Their representatives own a catalytic core consisting of ∼20 conserved nucleotides and a half-life of ∼15 min at neutral pH. In a bimolecular construct, class III exhibits unique broad generality on the enzyme strand, which can be potentially harnessed to engineer DNA-responsive DNA hydrolyzers for detection of any target ssDNA sequence. Besides the new findings, this work should also provide an improved approach to select for DNA-hydrolyzing deoxyribozymes that use various molecules and ions as cofactors.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkab439