StrainHub: a phylogenetic tool to construct pathogen transmission networks

Abstract Summary In exploring the epidemiology of infectious diseases, networks have been used to reconstruct contacts among individuals and/or populations. Summarizing networks using pathogen metadata (e.g. host species and place of isolation) and a phylogenetic tree is a nascent, alternative appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2020-02, Vol.36 (3), p.945-947
Hauptverfasser: de Bernardi Schneider, Adriano, Ford, Colby T, Hostager, Reilly, Williams, John, Cioce, Michael, Çatalyürek, Ümit V, Wertheim, Joel O, Janies, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Summary In exploring the epidemiology of infectious diseases, networks have been used to reconstruct contacts among individuals and/or populations. Summarizing networks using pathogen metadata (e.g. host species and place of isolation) and a phylogenetic tree is a nascent, alternative approach. In this paper, we introduce a tool for reconstructing transmission networks in arbitrary space from phylogenetic information and metadata. Our goals are to provide a means of deriving new insights and infection control strategies based on the dynamics of the pathogen lineages derived from networks and centrality metrics. We created a web-based application, called StrainHub, in which a user can input a phylogenetic tree based on genetic or other data along with characters derived from metadata using their preferred tree search method. StrainHub generates a transmission network based on character state changes in metadata, such as place or source of isolation, mapped on the phylogenetic tree. The user has the option to calculate centrality metrics on the nodes including betweenness, closeness, degree and a new metric, the source/hub ratio. The outputs include the network with values for metrics on its nodes and the tree with characters reconstructed. All of these results can be exported for further analysis. Availability and implementation strainhub.io and https://github.com/abschneider/StrainHub.
ISSN:1367-4803
1367-4811
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btz646