Discovery of μ,δ-Opioid Receptor Dual-Biased Agonists That Overcome the Limitation of Prior Biased Agonists
Morphine is widely used in pain management although the risk of side effects is significant. The use of biased agonists to the G protein of μ-opioid receptors has been suggested as a potential solution, although oliceridine and PZM21 have previously failed to demonstrate benefits in clinical studies...
Gespeichert in:
Veröffentlicht in: | ACS pharmacology & translational science 2021-06, Vol.4 (3), p.1149-1160 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Morphine is widely used in pain management although the risk of side effects is significant. The use of biased agonists to the G protein of μ-opioid receptors has been suggested as a potential solution, although oliceridine and PZM21 have previously failed to demonstrate benefits in clinical studies. An amplification-induced confusion in the process of comparing G protein and beta-arrestin pathways may account for previously biased agonist misidentification. Here, we have devised a strategy to discover biased agonists with intrinsic efficacy. We computationally simulated 430 000 molecular dockings to the μ-opioid receptor to construct a compound library. Hits were then verified experimentally. Using the verified compounds, we performed simulations to build a second library with a common scaffold and selected compounds that showed a bias to μ- and δ-opioid receptors in a cell-based assay. Three compounds (ID110460001, ID110460002, and ID110460003) with a dual-biased agonistic effect for μ- and δ-opioid receptors were identified. These candidates are full agonists for the μ-opioid receptor and show specific binding modes. On the basis of our findings, we expect our novel compounds to act as more biased agonists compared to existing drugs, including oliceridine. |
---|---|
ISSN: | 2575-9108 2575-9108 |
DOI: | 10.1021/acsptsci.1c00044 |