Curcumin nicotinate suppresses abdominal aortic aneurysm pyroptosis via lncRNA PVT1/miR-26a/KLF4 axis through regulating the PI3K/AKT signaling pathway

Abdominal aortic aneurysm (AAA) is a chronic dilated disease of the aorta that is characterized by chronic inflammation. Curcumin (Cur) is previously showed to attenuate AAA by inhibiting inflammatory response in ApoE −/− mice. Since Cur has the limitations of aqueous solubility and instability. Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology research (Cambridge) 2021-05, Vol.10 (3), p.651-661
Hauptverfasser: Xiong, Jian-Ming, Liu, Hui, Chen, Jie, Zou, Qing-Qing, Wang, Yang-Yi-Jing, Bi, Guo-Shan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abdominal aortic aneurysm (AAA) is a chronic dilated disease of the aorta that is characterized by chronic inflammation. Curcumin (Cur) is previously showed to attenuate AAA by inhibiting inflammatory response in ApoE −/− mice. Since Cur has the limitations of aqueous solubility and instability. Here, we focus on the role of curcumin nicotinate (CurTn), a Cur derivative is derived from Cur and nicotinate. An in vitro model of AAA was established by treating vascular smooth muscle cells (VSMCs) with II (Ang-II). Gene and protein expressions were examined by quantitative real-time PCR (qPCR) or western blotting. Cell migration and pyroptosis were determined by transwell assay and flow cytometry. The interaction between plasmacytoma variant translocation 1 (PVT1), miR-26a and krüppel-like factor 4 (KLF4) was predicted by online prediction tool and confirmed by luciferase reporter assay. CurTn reduced Ang-II-induced AAA-associated proteins, inflammatory cytokine expressions, and attenuated pyroptosis in VSMCs. PVT1 overexpression suppressed the inhibitory effect of CurTn on AngII-induced pyroptosis and inflammatory in VSMCs by sponging miR-26a. miR-26a directly targeted KLF4 and suppressed its expression, which eventually led to the deactivation of the PI3K/AKT signaling pathway. Besides, the regulatory effect of CurTn on pyroptosis of VSMCs induced by Ang-II was reversed through the PVT1/miR-26a/KLF4 pathway. In short, CurTn suppressed VSMCs pyroptosis and inflammation though mediation PVT1/miR-26a/KLF4 axis by regulating the PI3K/AKT signaling pathway, CurTn might consider as a potential therapeutic target in the treatment of AAA.
ISSN:2045-4538
2045-452X
2045-4538
DOI:10.1093/toxres/tfab041