Neurophysiological Indices of Audiovisual Speech Processing Reveal a Hierarchy of Multisensory Integration Effects

Seeing a speaker's face benefits speech comprehension, especially in challenging listening conditions. This perceptual benefit is thought to stem from the neural integration of visual and auditory speech at multiple stages of processing, whereby movement of a speaker's face provides tempor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2021-06, Vol.41 (23), p.4991-5003
Hauptverfasser: O'Sullivan, Aisling E, Crosse, Michael J, Liberto, Giovanni M Di, de Cheveigné, Alain, Lalor, Edmund C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Seeing a speaker's face benefits speech comprehension, especially in challenging listening conditions. This perceptual benefit is thought to stem from the neural integration of visual and auditory speech at multiple stages of processing, whereby movement of a speaker's face provides temporal cues to auditory cortex, and articulatory information from the speaker's mouth can aid recognizing specific linguistic units (e.g., phonemes, syllables). However, it remains unclear how the integration of these cues varies as a function of listening conditions. Here, we sought to provide insight on these questions by examining EEG responses in humans (males and females) to natural audiovisual (AV), audio, and visual speech in quiet and in noise. We represented our speech stimuli in terms of their spectrograms and their phonetic features and then quantified the strength of the encoding of those features in the EEG using canonical correlation analysis (CCA). The encoding of both spectrotemporal and phonetic features was shown to be more robust in AV speech responses than what would have been expected from the summation of the audio and visual speech responses, suggesting that multisensory integration occurs at both spectrotemporal and phonetic stages of speech processing. We also found evidence to suggest that the integration effects may change with listening conditions; however, this was an exploratory analysis and future work will be required to examine this effect using a within-subject design. These findings demonstrate that integration of audio and visual speech occurs at multiple stages along the speech processing hierarchy. During conversation, visual cues impact our perception of speech. Integration of auditory and visual speech is thought to occur at multiple stages of speech processing and vary flexibly depending on the listening conditions. Here, we examine audiovisual (AV) integration at two stages of speech processing using the speech spectrogram and a phonetic representation, and test how AV integration adapts to degraded listening conditions. We find significant integration at both of these stages regardless of listening conditions. These findings reveal neural indices of multisensory interactions at different stages of processing and provide support for the multistage integration framework.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.0906-20.2021