Human placental villous stromal extracellular matrix regulates fetoplacental angiogenesis in severe fetal growth restriction

Pregnancies complicated by severe, early-onset fetal growth restriction with abnormal Doppler velocimetry (FGRadv) have a sparse villous vascular tree secondary to impaired angiogenesis. As endothelial cell (EC) and stromal matrix interactions are key regulators of angiogenesis, we investigated the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical science (1979) 2021-05, Vol.135 (9), p.1127-1143
Hauptverfasser: Ji, Shuhan, Gumina, Diane, McPeak, Kathryn, Moldovan, Radu, Post, Miriam D, Su, Emily J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pregnancies complicated by severe, early-onset fetal growth restriction with abnormal Doppler velocimetry (FGRadv) have a sparse villous vascular tree secondary to impaired angiogenesis. As endothelial cell (EC) and stromal matrix interactions are key regulators of angiogenesis, we investigated the role of placental stromal villous matrix on fetoplacental EC angiogenesis. We have developed a novel model of generating placental fibroblast (FB) cell-derived matrices (CDMs), allowing us to interrogate placenta-specific human EC and stromal matrix interactions and their effects on fetoplacental angiogenesis. We found that as compared with control ECs plated on control matrix, FGRadv ECs plated on FGRadv matrix exhibited severe migrational defects, as measured by velocity, directionality, accumulated distance, and Euclidean distance in conjunction with less proliferation. However, control ECs, when interacting with FGRadv CDM, also demonstrated significant impairment in proliferation and migratory properties. Conversely several angiogenic attributes were rescued in FGRadv ECs subjected to control matrix, demonstrating the importance of placental villous stromal matrix and EC-stromal matrix interactions in regulation of fetoplacental angiogenesis.
ISSN:0143-5221
1470-8736
DOI:10.1042/CS20201533