Lipid-Bicelle-Coated Microfluidics for Intracellular Delivery with Reduced Fouling

Innovative technologies for intracellular delivery are ushering in a new era for gene editing, enabling the utilization of a patient’s own cells for stem cell and immunotherapies. In particular, cell-squeezing platforms provide unconventional forms of intracellular delivery, deforming cells through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-10, Vol.12 (41), p.45744-45752
Hauptverfasser: Belling, Jason N, Heidenreich, Liv K, Park, Jae Hyeon, Kawakami, Lisa M, Takahashi, Jack, Frost, Isaura M, Gong, Yao, Young, Thomas D, Jackman, Joshua A, Jonas, Steven J, Cho, Nam-Joon, Weiss, Paul S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Innovative technologies for intracellular delivery are ushering in a new era for gene editing, enabling the utilization of a patient’s own cells for stem cell and immunotherapies. In particular, cell-squeezing platforms provide unconventional forms of intracellular delivery, deforming cells through microfluidic constrictions to generate transient pores and to enable effective diffusion of biomolecular cargo. While these devices are promising gene-editing platforms, they require frequent maintenance due to the accumulation of cellular debris, limiting their potential for reaching the throughputs necessary for scalable cellular therapies. As these cell-squeezing technologies are improved, there is a need to develop next-generation platforms with higher throughput and longer lifespan, importantly, avoiding the buildup of cell debris and thus channel clogging. Here, we report a versatile strategy to coat the channels of microfluidic devices with lipid bilayers based on noncovalent lipid bicelle technology, which led to substantial improvements in reducing cell adhesion and protein adsorption. The antifouling properties of the lipid bilayer coating were evaluated, including membrane uniformity, passivation against nonspecific protein adsorption, and inhibition of cell attachment against multiple cell types. This surface functionalization approach was applied to coat constricted microfluidic channels for the intracellular delivery of fluorescently labeled dextran and plasmid DNA, demonstrating significant reductions in the accumulation of cell debris. Taken together, our work demonstrates that lipid bicelles are a useful tool to fabricate antifouling lipid bilayer coatings in cell-squeezing devices, resulting in reduced nonspecific fouling and cell clogging to improve performance.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.0c11485