Four-dimensional aspects of tight contact 3-manifolds
We conjecture a four-dimensional characterization of tightness: A contact structure on a 3-manifold Y is tight if and only if a slice-Bennequin inequality holds for smoothly embedded surfaces in Y × [0, 1]. An affirmative answer to our conjecture would imply an analogue of the Milnor conjecture for...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-06, Vol.118 (22), p.1-6 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We conjecture a four-dimensional characterization of tightness: A contact structure on a 3-manifold Y is tight if and only if a slice-Bennequin inequality holds for smoothly embedded surfaces in Y × [0, 1]. An affirmative answer to our conjecture would imply an analogue of the Milnor conjecture for torus knots: If a fibered link L induces a tight contact structure on Y, then its fiber surface maximizes the Euler characteristic among all surfaces in Y × [0, 1] with boundary L. We provide evidence for both conjectures by proving them for contact structures with nonvanishing Ozsváth–Szabó contact invariant. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.2025436118 |