Nanoreporter of an Enzymatic Suicide Inactivation Pathway

Enzymatic suicide inactivation, a route of permanent enzyme inhibition, is the mechanism of action for a wide array of pharmaceuticals. Here, we developed the first nanosensor that selectively reports the suicide inactivation pathway of an enzyme. The sensor is based on modulation of the near-infrar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2020-11, Vol.20 (11), p.7819-7827
Hauptverfasser: Yaari, Zvi, Cheung, Justin M, Baker, Hanan A, Frederiksen, Rune S, Jena, Prakrit V, Horoszko, Christopher P, Jiao, Fang, Scheuring, Simon, Luo, Minkui, Heller, Daniel A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enzymatic suicide inactivation, a route of permanent enzyme inhibition, is the mechanism of action for a wide array of pharmaceuticals. Here, we developed the first nanosensor that selectively reports the suicide inactivation pathway of an enzyme. The sensor is based on modulation of the near-infrared fluorescence of an enzyme-bound carbon nanotube. The nanosensor responded selectively to substrate-mediated suicide inactivation of the tyrosinase enzyme via bathochromic shifting of the nanotube emission wavelength. Mechanistic investigations revealed that singlet oxygen generated by the suicide inactivation pathway induced the response. We used the nanosensor to quantify the degree of enzymatic inactivation by measuring response rates to small molecule tyrosinase modulators. This work resulted in a new capability of interrogating a specific route of enzymatic death. Potential applications include drug screening and hit-validation for compounds that elicit or inhibit enzymatic inactivation and single-molecule measurements to assess population heterogeneity in enzyme activity.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.0c01858