iPSC Modeling of RBM20-Deficient DCM Identifies Upregulation of RBM20 as a Therapeutic Strategy
Recent advances in induced pluripotent stem cell (iPSC) technology and directed differentiation of iPSCs into cardiomyocytes (iPSC-CMs) make it possible to model genetic heart disease in vitro. We apply CRISPR/Cas9 genome editing technology to introduce three RBM20 mutations in iPSCs and differentia...
Gespeichert in:
Veröffentlicht in: | Cell reports (Cambridge) 2020-09, Vol.32 (10), p.108117-108117, Article 108117 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent advances in induced pluripotent stem cell (iPSC) technology and directed differentiation of iPSCs into cardiomyocytes (iPSC-CMs) make it possible to model genetic heart disease in vitro. We apply CRISPR/Cas9 genome editing technology to introduce three RBM20 mutations in iPSCs and differentiate them into iPSC-CMs to establish an in vitro model of RBM20 mutant dilated cardiomyopathy (DCM). In iPSC-CMs harboring a known causal RBM20 variant, the splicing of RBM20 target genes, calcium handling, and contractility are impaired consistent with the disease manifestation in patients. A variant (Pro633Leu) identified by exome sequencing of patient genomes displays the same disease phenotypes, thus establishing this variant as disease causing. We find that all-trans retinoic acid upregulates RBM20 expression and reverts the splicing, calcium handling, and contractility defects in iPSC-CMs with different causal RBM20 mutations. These results suggest that pharmacological upregulation of RBM20 expression is a promising therapeutic strategy for DCM patients with a heterozygous mutation in RBM20.
[Display omitted]
•RBM20 mutant DCM iPSC-cardiomyocytes show mRNA splicing and contractile defects•RBM20 P633L variant causes the phenotypes of the disease•All-trans retinoic acid upregulates RBM20 mRNA and protein expression•Pharmacological RBM20 upregulation ameliorates DCM phenotypes in vitro
Briganti et al. use iPSC and CRISPR/Cas9 to create a model of RBM20-deficient dilated cardiomyopathy (DCM) that recapitulates mRNA splicing and contractile defects of the disease. They evaluate pharmacological upregulation of RBM20 as a therapeutic strategy. All-trans retinoic acid upregulates RBM20 expression and ameliorates the in vitro hallmarks of disease. |
---|---|
ISSN: | 2211-1247 2211-1247 |
DOI: | 10.1016/j.celrep.2020.108117 |