The large subunit of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha – a minimal hydrogenase?

Chemically synthesized compounds that are capable of facilitating the reversible splitting of dihydrogen into protons and electrons are rare in chemists' portfolio. The corresponding biocatalysts – hydrogenases – are, however, abundant in the microbial world. [NiFe]-hydrogenases represent a maj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2020-04, Vol.11 (21), p.5453-5465
Hauptverfasser: Caserta, Giorgio, Lorent, Christian, Ciaccafava, Alexandre, Keck, Matthias, Breglia, Raffaella, Greco, Claudio, Limberg, Christian, Hildebrandt, Peter, Cramer, Stephen P., Zebger, Ingo, Lenz, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5465
container_issue 21
container_start_page 5453
container_title Chemical science (Cambridge)
container_volume 11
creator Caserta, Giorgio
Lorent, Christian
Ciaccafava, Alexandre
Keck, Matthias
Breglia, Raffaella
Greco, Claudio
Limberg, Christian
Hildebrandt, Peter
Cramer, Stephen P.
Zebger, Ingo
Lenz, Oliver
description Chemically synthesized compounds that are capable of facilitating the reversible splitting of dihydrogen into protons and electrons are rare in chemists' portfolio. The corresponding biocatalysts – hydrogenases – are, however, abundant in the microbial world. [NiFe]-hydrogenases represent a major subclass and display a bipartite architecture, composed of a large subunit, hosting the catalytic NiFe(CO)(CN) 2 cofactor, and a small subunit whose iron–sulfur clusters are responsible for electron transfer. To analyze in detail the catalytic competence of the large subunit without its smaller counterpart, we purified the large subunit HoxC of the regulatory [NiFe]-hydrogenase of the model H 2 oxidizer Ralstonia eutropha to homogeneity. Metal determination and infrared spectroscopy revealed a stoichiometric loading of the metal cofactor. This enabled for the first time the determination of the UV-visible extinction coefficient of the NiFe(CO)(CN) 2 cofactor. Moreover, the absence of disturbing iron–sulfur clusters allowed an unbiased look into the low-spin Fe 2+ of the active site by Mössbauer spectroscopy. Isolated HoxC was active in catalytic hydrogen–deuterium exchange, demonstrating its capacity to activate H 2 . Its catalytic activity was drastically lower than that of the bipartite holoenzyme. This was consistent with infrared and electron paramagnetic resonance spectroscopic observations, suggesting that the bridging position between the active site nickel and iron ions is predominantly occupied by water-derived ligands, even under reducing conditions. In fact, the presence of water-derived ligands bound to low-spin Ni 2+ was reflected by the absorption bands occurring in the corresponding UV-vis spectra, as revealed by time-dependent density functional theory calculations conducted on appropriate in silico models. Thus, the isolated large subunits indeed represent simple [NiFe]-hydrogenase models, which could serve as blueprints for chemically synthesized mimics. Furthermore, our data point to a fundamental role of the small subunit in preventing water access to the catalytic center, which significantly increases the H 2 splitting capacity of the enzyme.
doi_str_mv 10.1039/d0sc01369b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8159394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2538049007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-bfcd44e3d82f708d40aa05f37cf7048e0c0487be79c38a5b6e9f27ed44c391a23</originalsourceid><addsrcrecordid>eNpdkctu1DAUhiMEolXphiewxAaQUo4vGdsbUBnoRRqBBGWFkOU4JxNXSTzYSaXZ8Q68IU9SD1NVUC98Of7-3798iuI5hRMKXL9pIDmgfKHrR8UhA0HLRcX14_s9g4PiOKVryINzWjH5tDjgArQAyQ4Lf9Uh6W1cI0lzPY9-IqElUy5GXM-9nULcku-f_Bn-KLttE8MaR5uQtDEM5Ivt0xRGbwnOUwybzpI_v34TSwY_-sH25B_Fu2fFkzbzeHy3HhXfzj5eLS_K1efzy-XpqnS8YlNZt64RAnmjWCtBNQKsharl0uWjUAguz7JGqR1XtqoXqFsmMWsc19QyflS83ftu5nrAxuE4RdubTcyJ4tYE683_N6PvzDrcGEUrzbXIBq_2Bt0D2cXpyuxqwEFqLuQNzezLu8di-Dljmszgk8O-tyOGORlWcQVCA8iMvniAXoc5jvkrDBOgFFeV2KV_vadcDClFbO8TUDC7hpsP8HX5t-Hv-S1HkJ1Z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408838542</pqid></control><display><type>article</type><title>The large subunit of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha – a minimal hydrogenase?</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Caserta, Giorgio ; Lorent, Christian ; Ciaccafava, Alexandre ; Keck, Matthias ; Breglia, Raffaella ; Greco, Claudio ; Limberg, Christian ; Hildebrandt, Peter ; Cramer, Stephen P. ; Zebger, Ingo ; Lenz, Oliver</creator><creatorcontrib>Caserta, Giorgio ; Lorent, Christian ; Ciaccafava, Alexandre ; Keck, Matthias ; Breglia, Raffaella ; Greco, Claudio ; Limberg, Christian ; Hildebrandt, Peter ; Cramer, Stephen P. ; Zebger, Ingo ; Lenz, Oliver</creatorcontrib><description>Chemically synthesized compounds that are capable of facilitating the reversible splitting of dihydrogen into protons and electrons are rare in chemists' portfolio. The corresponding biocatalysts – hydrogenases – are, however, abundant in the microbial world. [NiFe]-hydrogenases represent a major subclass and display a bipartite architecture, composed of a large subunit, hosting the catalytic NiFe(CO)(CN) 2 cofactor, and a small subunit whose iron–sulfur clusters are responsible for electron transfer. To analyze in detail the catalytic competence of the large subunit without its smaller counterpart, we purified the large subunit HoxC of the regulatory [NiFe]-hydrogenase of the model H 2 oxidizer Ralstonia eutropha to homogeneity. Metal determination and infrared spectroscopy revealed a stoichiometric loading of the metal cofactor. This enabled for the first time the determination of the UV-visible extinction coefficient of the NiFe(CO)(CN) 2 cofactor. Moreover, the absence of disturbing iron–sulfur clusters allowed an unbiased look into the low-spin Fe 2+ of the active site by Mössbauer spectroscopy. Isolated HoxC was active in catalytic hydrogen–deuterium exchange, demonstrating its capacity to activate H 2 . Its catalytic activity was drastically lower than that of the bipartite holoenzyme. This was consistent with infrared and electron paramagnetic resonance spectroscopic observations, suggesting that the bridging position between the active site nickel and iron ions is predominantly occupied by water-derived ligands, even under reducing conditions. In fact, the presence of water-derived ligands bound to low-spin Ni 2+ was reflected by the absorption bands occurring in the corresponding UV-vis spectra, as revealed by time-dependent density functional theory calculations conducted on appropriate in silico models. Thus, the isolated large subunits indeed represent simple [NiFe]-hydrogenase models, which could serve as blueprints for chemically synthesized mimics. Furthermore, our data point to a fundamental role of the small subunit in preventing water access to the catalytic center, which significantly increases the H 2 splitting capacity of the enzyme.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d0sc01369b</identifier><identifier>PMID: 34094072</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectra ; Biochemistry, Molecular Biology ; Biophysics ; Carbon monoxide ; Catalytic activity ; Chemistry ; Chemists ; Clusters ; Data points ; Density functional theory ; Deuterium ; Electron paramagnetic resonance ; Electron transfer ; Homogeneity ; Hydrogenase ; Intermetallic compounds ; Iron ; Iron compounds ; Life Sciences ; Ligands ; Microorganisms ; Mossbauer spectroscopy ; Nickel compounds ; Oxidizing agents ; Soil bacteria ; Spectrum analysis ; Splitting ; Sulfur ; Synthesis ; Time dependence</subject><ispartof>Chemical science (Cambridge), 2020-04, Vol.11 (21), p.5453-5465</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-bfcd44e3d82f708d40aa05f37cf7048e0c0487be79c38a5b6e9f27ed44c391a23</citedby><cites>FETCH-LOGICAL-c352t-bfcd44e3d82f708d40aa05f37cf7048e0c0487be79c38a5b6e9f27ed44c391a23</cites><orcidid>0000-0002-6354-3585 ; 0000-0002-3751-7623 ; 0000-0001-9628-7875 ; 0000-0003-0986-3059 ; 0000-0001-9057-4523 ; 0000-0003-1030-5900 ; 0000-0003-0579-8552 ; 0000-0003-4550-5128 ; 0000-0001-9081-1736 ; 0000-0002-0751-1386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159394/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159394/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03079347$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Caserta, Giorgio</creatorcontrib><creatorcontrib>Lorent, Christian</creatorcontrib><creatorcontrib>Ciaccafava, Alexandre</creatorcontrib><creatorcontrib>Keck, Matthias</creatorcontrib><creatorcontrib>Breglia, Raffaella</creatorcontrib><creatorcontrib>Greco, Claudio</creatorcontrib><creatorcontrib>Limberg, Christian</creatorcontrib><creatorcontrib>Hildebrandt, Peter</creatorcontrib><creatorcontrib>Cramer, Stephen P.</creatorcontrib><creatorcontrib>Zebger, Ingo</creatorcontrib><creatorcontrib>Lenz, Oliver</creatorcontrib><title>The large subunit of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha – a minimal hydrogenase?</title><title>Chemical science (Cambridge)</title><description>Chemically synthesized compounds that are capable of facilitating the reversible splitting of dihydrogen into protons and electrons are rare in chemists' portfolio. The corresponding biocatalysts – hydrogenases – are, however, abundant in the microbial world. [NiFe]-hydrogenases represent a major subclass and display a bipartite architecture, composed of a large subunit, hosting the catalytic NiFe(CO)(CN) 2 cofactor, and a small subunit whose iron–sulfur clusters are responsible for electron transfer. To analyze in detail the catalytic competence of the large subunit without its smaller counterpart, we purified the large subunit HoxC of the regulatory [NiFe]-hydrogenase of the model H 2 oxidizer Ralstonia eutropha to homogeneity. Metal determination and infrared spectroscopy revealed a stoichiometric loading of the metal cofactor. This enabled for the first time the determination of the UV-visible extinction coefficient of the NiFe(CO)(CN) 2 cofactor. Moreover, the absence of disturbing iron–sulfur clusters allowed an unbiased look into the low-spin Fe 2+ of the active site by Mössbauer spectroscopy. Isolated HoxC was active in catalytic hydrogen–deuterium exchange, demonstrating its capacity to activate H 2 . Its catalytic activity was drastically lower than that of the bipartite holoenzyme. This was consistent with infrared and electron paramagnetic resonance spectroscopic observations, suggesting that the bridging position between the active site nickel and iron ions is predominantly occupied by water-derived ligands, even under reducing conditions. In fact, the presence of water-derived ligands bound to low-spin Ni 2+ was reflected by the absorption bands occurring in the corresponding UV-vis spectra, as revealed by time-dependent density functional theory calculations conducted on appropriate in silico models. Thus, the isolated large subunits indeed represent simple [NiFe]-hydrogenase models, which could serve as blueprints for chemically synthesized mimics. Furthermore, our data point to a fundamental role of the small subunit in preventing water access to the catalytic center, which significantly increases the H 2 splitting capacity of the enzyme.</description><subject>Absorption spectra</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biophysics</subject><subject>Carbon monoxide</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Chemists</subject><subject>Clusters</subject><subject>Data points</subject><subject>Density functional theory</subject><subject>Deuterium</subject><subject>Electron paramagnetic resonance</subject><subject>Electron transfer</subject><subject>Homogeneity</subject><subject>Hydrogenase</subject><subject>Intermetallic compounds</subject><subject>Iron</subject><subject>Iron compounds</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Microorganisms</subject><subject>Mossbauer spectroscopy</subject><subject>Nickel compounds</subject><subject>Oxidizing agents</subject><subject>Soil bacteria</subject><subject>Spectrum analysis</subject><subject>Splitting</subject><subject>Sulfur</subject><subject>Synthesis</subject><subject>Time dependence</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkctu1DAUhiMEolXphiewxAaQUo4vGdsbUBnoRRqBBGWFkOU4JxNXSTzYSaXZ8Q68IU9SD1NVUC98Of7-3798iuI5hRMKXL9pIDmgfKHrR8UhA0HLRcX14_s9g4PiOKVryINzWjH5tDjgArQAyQ4Lf9Uh6W1cI0lzPY9-IqElUy5GXM-9nULcku-f_Bn-KLttE8MaR5uQtDEM5Ivt0xRGbwnOUwybzpI_v34TSwY_-sH25B_Fu2fFkzbzeHy3HhXfzj5eLS_K1efzy-XpqnS8YlNZt64RAnmjWCtBNQKsharl0uWjUAguz7JGqR1XtqoXqFsmMWsc19QyflS83ftu5nrAxuE4RdubTcyJ4tYE683_N6PvzDrcGEUrzbXIBq_2Bt0D2cXpyuxqwEFqLuQNzezLu8di-Dljmszgk8O-tyOGORlWcQVCA8iMvniAXoc5jvkrDBOgFFeV2KV_vadcDClFbO8TUDC7hpsP8HX5t-Hv-S1HkJ1Z</recordid><startdate>20200427</startdate><enddate>20200427</enddate><creator>Caserta, Giorgio</creator><creator>Lorent, Christian</creator><creator>Ciaccafava, Alexandre</creator><creator>Keck, Matthias</creator><creator>Breglia, Raffaella</creator><creator>Greco, Claudio</creator><creator>Limberg, Christian</creator><creator>Hildebrandt, Peter</creator><creator>Cramer, Stephen P.</creator><creator>Zebger, Ingo</creator><creator>Lenz, Oliver</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6354-3585</orcidid><orcidid>https://orcid.org/0000-0002-3751-7623</orcidid><orcidid>https://orcid.org/0000-0001-9628-7875</orcidid><orcidid>https://orcid.org/0000-0003-0986-3059</orcidid><orcidid>https://orcid.org/0000-0001-9057-4523</orcidid><orcidid>https://orcid.org/0000-0003-1030-5900</orcidid><orcidid>https://orcid.org/0000-0003-0579-8552</orcidid><orcidid>https://orcid.org/0000-0003-4550-5128</orcidid><orcidid>https://orcid.org/0000-0001-9081-1736</orcidid><orcidid>https://orcid.org/0000-0002-0751-1386</orcidid></search><sort><creationdate>20200427</creationdate><title>The large subunit of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha – a minimal hydrogenase?</title><author>Caserta, Giorgio ; Lorent, Christian ; Ciaccafava, Alexandre ; Keck, Matthias ; Breglia, Raffaella ; Greco, Claudio ; Limberg, Christian ; Hildebrandt, Peter ; Cramer, Stephen P. ; Zebger, Ingo ; Lenz, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-bfcd44e3d82f708d40aa05f37cf7048e0c0487be79c38a5b6e9f27ed44c391a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectra</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biophysics</topic><topic>Carbon monoxide</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Chemists</topic><topic>Clusters</topic><topic>Data points</topic><topic>Density functional theory</topic><topic>Deuterium</topic><topic>Electron paramagnetic resonance</topic><topic>Electron transfer</topic><topic>Homogeneity</topic><topic>Hydrogenase</topic><topic>Intermetallic compounds</topic><topic>Iron</topic><topic>Iron compounds</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Microorganisms</topic><topic>Mossbauer spectroscopy</topic><topic>Nickel compounds</topic><topic>Oxidizing agents</topic><topic>Soil bacteria</topic><topic>Spectrum analysis</topic><topic>Splitting</topic><topic>Sulfur</topic><topic>Synthesis</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caserta, Giorgio</creatorcontrib><creatorcontrib>Lorent, Christian</creatorcontrib><creatorcontrib>Ciaccafava, Alexandre</creatorcontrib><creatorcontrib>Keck, Matthias</creatorcontrib><creatorcontrib>Breglia, Raffaella</creatorcontrib><creatorcontrib>Greco, Claudio</creatorcontrib><creatorcontrib>Limberg, Christian</creatorcontrib><creatorcontrib>Hildebrandt, Peter</creatorcontrib><creatorcontrib>Cramer, Stephen P.</creatorcontrib><creatorcontrib>Zebger, Ingo</creatorcontrib><creatorcontrib>Lenz, Oliver</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caserta, Giorgio</au><au>Lorent, Christian</au><au>Ciaccafava, Alexandre</au><au>Keck, Matthias</au><au>Breglia, Raffaella</au><au>Greco, Claudio</au><au>Limberg, Christian</au><au>Hildebrandt, Peter</au><au>Cramer, Stephen P.</au><au>Zebger, Ingo</au><au>Lenz, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The large subunit of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha – a minimal hydrogenase?</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2020-04-27</date><risdate>2020</risdate><volume>11</volume><issue>21</issue><spage>5453</spage><epage>5465</epage><pages>5453-5465</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Chemically synthesized compounds that are capable of facilitating the reversible splitting of dihydrogen into protons and electrons are rare in chemists' portfolio. The corresponding biocatalysts – hydrogenases – are, however, abundant in the microbial world. [NiFe]-hydrogenases represent a major subclass and display a bipartite architecture, composed of a large subunit, hosting the catalytic NiFe(CO)(CN) 2 cofactor, and a small subunit whose iron–sulfur clusters are responsible for electron transfer. To analyze in detail the catalytic competence of the large subunit without its smaller counterpart, we purified the large subunit HoxC of the regulatory [NiFe]-hydrogenase of the model H 2 oxidizer Ralstonia eutropha to homogeneity. Metal determination and infrared spectroscopy revealed a stoichiometric loading of the metal cofactor. This enabled for the first time the determination of the UV-visible extinction coefficient of the NiFe(CO)(CN) 2 cofactor. Moreover, the absence of disturbing iron–sulfur clusters allowed an unbiased look into the low-spin Fe 2+ of the active site by Mössbauer spectroscopy. Isolated HoxC was active in catalytic hydrogen–deuterium exchange, demonstrating its capacity to activate H 2 . Its catalytic activity was drastically lower than that of the bipartite holoenzyme. This was consistent with infrared and electron paramagnetic resonance spectroscopic observations, suggesting that the bridging position between the active site nickel and iron ions is predominantly occupied by water-derived ligands, even under reducing conditions. In fact, the presence of water-derived ligands bound to low-spin Ni 2+ was reflected by the absorption bands occurring in the corresponding UV-vis spectra, as revealed by time-dependent density functional theory calculations conducted on appropriate in silico models. Thus, the isolated large subunits indeed represent simple [NiFe]-hydrogenase models, which could serve as blueprints for chemically synthesized mimics. Furthermore, our data point to a fundamental role of the small subunit in preventing water access to the catalytic center, which significantly increases the H 2 splitting capacity of the enzyme.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>34094072</pmid><doi>10.1039/d0sc01369b</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6354-3585</orcidid><orcidid>https://orcid.org/0000-0002-3751-7623</orcidid><orcidid>https://orcid.org/0000-0001-9628-7875</orcidid><orcidid>https://orcid.org/0000-0003-0986-3059</orcidid><orcidid>https://orcid.org/0000-0001-9057-4523</orcidid><orcidid>https://orcid.org/0000-0003-1030-5900</orcidid><orcidid>https://orcid.org/0000-0003-0579-8552</orcidid><orcidid>https://orcid.org/0000-0003-4550-5128</orcidid><orcidid>https://orcid.org/0000-0001-9081-1736</orcidid><orcidid>https://orcid.org/0000-0002-0751-1386</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2020-04, Vol.11 (21), p.5453-5465
issn 2041-6520
2041-6539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8159394
source DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access
subjects Absorption spectra
Biochemistry, Molecular Biology
Biophysics
Carbon monoxide
Catalytic activity
Chemistry
Chemists
Clusters
Data points
Density functional theory
Deuterium
Electron paramagnetic resonance
Electron transfer
Homogeneity
Hydrogenase
Intermetallic compounds
Iron
Iron compounds
Life Sciences
Ligands
Microorganisms
Mossbauer spectroscopy
Nickel compounds
Oxidizing agents
Soil bacteria
Spectrum analysis
Splitting
Sulfur
Synthesis
Time dependence
title The large subunit of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha – a minimal hydrogenase?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T19%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20large%20subunit%20of%20the%20regulatory%20%5BNiFe%5D-hydrogenase%20from%20Ralstonia%20eutropha%20%E2%80%93%20a%20minimal%20hydrogenase?&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Caserta,%20Giorgio&rft.date=2020-04-27&rft.volume=11&rft.issue=21&rft.spage=5453&rft.epage=5465&rft.pages=5453-5465&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d0sc01369b&rft_dat=%3Cproquest_pubme%3E2538049007%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408838542&rft_id=info:pmid/34094072&rfr_iscdi=true