Responsive Polyesters with Alkene and Carboxylic Acid Side-Groups for Tissue Engineering Applications
Main chain polyesters have been extensively used in the biomedical field. Despite their many advantages, including biocompatibility, biodegradability, and others, these materials are rather inert and lack specific functionalities which will endow them with additional biological and responsive proper...
Gespeichert in:
Veröffentlicht in: | Polymers 2021-05, Vol.13 (10), p.1636 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Main chain polyesters have been extensively used in the biomedical field. Despite their many advantages, including biocompatibility, biodegradability, and others, these materials are rather inert and lack specific functionalities which will endow them with additional biological and responsive properties. In this work, novel pH-responsive main chain polyesters have been prepared by a conventional condensation polymerization of a vinyl functionalized diol with a diacid chloride, followed by a photo-induced thiol-ene click reaction to attach functional carboxylic acid side-groups along the polymer chains. Two different mercaptocarboxylic acids were employed, allowing to vary the alkyl chain length of the polymer pendant groups. Moreover, the degree of modification, and as a result, the carboxylic acid content of the polymers, was easily tuned by varying the irradiation time during the click reaction. Both these parameters, were shown to strongly influence the responsive behavior of the polyesters, which presented adjustable pKα values and water solubilities. Finally, the difunctional polyesters bearing the alkene and carboxylic acid functionalities enabled the preparation of cross-linked polyester films by chemically linking the pendant vinyl bonds on the polymer side groups. The biocompatibility of the cross-linked polymers films was assessed in L929 fibroblast cultures and showed that the cell viability, proliferation, and attachment were greatly promoted on the polyester surface, bearing the shorter alkyl chain length side groups and the higher fraction of carboxylic acid functionalities. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym13101636 |