Prediction of Microvascular Invasion in Hepatocellular Carcinoma via Deep Learning: A Multi-Center and Prospective Validation Study

Microvascular invasion (MVI) is a critical risk factor for postoperative recurrence of hepatocellular carcinoma (HCC). Preknowledge of MVI would assist tailored surgery planning in HCC management. In this multicenter study, we aimed to explore the validity of deep learning (DL) in MVI prediction usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2021-05, Vol.13 (10), p.2368
Hauptverfasser: Wei, Jingwei, Jiang, Hanyu, Zeng, Mengsu, Wang, Meiyun, Niu, Meng, Gu, Dongsheng, Chong, Huanhuan, Zhang, Yanyan, Fu, Fangfang, Zhou, Mu, Chen, Jie, Lyv, Fudong, Wei, Hong, Bashir, Mustafa R., Song, Bin, Li, Hongjun, Tian, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microvascular invasion (MVI) is a critical risk factor for postoperative recurrence of hepatocellular carcinoma (HCC). Preknowledge of MVI would assist tailored surgery planning in HCC management. In this multicenter study, we aimed to explore the validity of deep learning (DL) in MVI prediction using two imaging modalities—contrast-enhanced computed tomography (CE-CT) and gadoxetic acid-enhanced magnetic resonance imaging (EOB-MRI). A total of 750 HCCs were enrolled from five Chinese tertiary hospitals. Retrospective CE-CT (n = 306, collected between March, 2013 and July, 2019) and EOB-MRI (n = 329, collected between March, 2012 and March, 2019) data were used to train two DL models, respectively. Prospective external validation (n = 115, collected between July, 2015 and February, 2018) was performed to assess the developed models. Furthermore, DL-based attention maps were utilized to visualize high-risk MVI regions. Our findings revealed that the EOB-MRI-based DL model achieved superior prediction outcome to the CE-CT-based DL model (area under receiver operating characteristics curve (AUC): 0.812 vs. 0.736, p = 0.038; sensitivity: 70.4% vs. 57.4%, p = 0.015; specificity: 80.3% vs. 86.9%, p = 0.052). DL attention maps could visualize peritumoral high-risk areas with genuine histopathologic confirmation. Both DL models could stratify high and low-risk groups regarding progression free survival and overall survival (p < 0.05). Thus, DL can be an efficient tool for MVI prediction, and EOB-MRI was proven to be the modality with advantage for MVI assessment than CE-CT.
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers13102368