Intumescent Flame Retardant Mechanism of Lignosulfonate as a Char Forming Agent in Rigid Polyurethane Foam

Intumescent flame retardants (IFR) have been widely used to improve flame retardancy of rigid polyurethane (RPU) foams and the most commonly used char forming agent is pentaerythritol (PER). Lignosulfonate (LS) is a natural macromolecule with substantial aromatic structures and abundant hydroxyl gro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2021-05, Vol.13 (10), p.1585
Hauptverfasser: Lu, Weimiao, Ye, Jiewang, Zhu, Lianghai, Jin, Zhenfu, Matsumoto, Yuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intumescent flame retardants (IFR) have been widely used to improve flame retardancy of rigid polyurethane (RPU) foams and the most commonly used char forming agent is pentaerythritol (PER). Lignosulfonate (LS) is a natural macromolecule with substantial aromatic structures and abundant hydroxyl groups, and carbon content higher than PER. The flame retardancy and its mechanism of LS as char forming agent instead of PER in IFR formulation were investigated by scanning electron microscopy, thermogravimetric analysis, limiting oxygen index testing and cone calorimeter test. The results showed LS as a char forming agent did not increase the density of RPU/LS foams. LOI value and char residue of RPU/LS foam were higher than RPU/PER and the mass loss of RPU/LS foam decreased 18%, suggesting enhanced thermal stability. CCT results showed LS as a char forming agent in IFR formulation effectively enhanced the flame retardancy of RPU foams with respect to PER. The flame retardancy mechanism showed RPU/LS foam presented a continuous and relatively compact char layer, acting as the effect of the flame retardant and heat insulation between gaseous and condensed phases. The efficiency of different LS ratio in IFR formulation as char forming agent was different, and the best flame retardancy and thermal stability was obtained at RPU/LS1.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym13101585