The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa

Reliable prediction of water quality changes is a prerequisite for early water pollution control and is vital in environmental monitoring, ecosystem sustainability, and human health. This study uses Artificial Neural Network (ANN) technique to develop the best model fits to predict water quality par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2021-05, Vol.18 (10), p.5248
Hauptverfasser: Setshedi, Koketso J., Mutingwende, Nhamo, Ngqwala, Nosiphiwe P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reliable prediction of water quality changes is a prerequisite for early water pollution control and is vital in environmental monitoring, ecosystem sustainability, and human health. This study uses Artificial Neural Network (ANN) technique to develop the best model fits to predict water quality parameters by employing multilayer perceptron (MLP) neural network and the radial basis function (RBF) neural network, using data collected from three district municipalities. Two input combination models, MLP-4-5-4 and MLP-4-9-4, were trained, verified, and tested for their predictive performance ability, and their physicochemical prediction accuracy was compared by using each model’s observed data with the predicted data. The MLP-4-5-4 model showed a better understanding of the data sets and water quality predictive ability giving an MSE of 39.06589 and a correlation coefficient (R2) of the observed and the predicted water quality of 0.989383 compared to the MLP-4-9-4 model (R2 = 0.993532, MSE = 39.03087). These results apply to natural water resources management in South Africa and similar catchment systems. The MLP-4-5-4 system can be scaled up for future water quality prediction of the Waste Water Treatment Plants (WWTPs), groundwater, and surface water while raising awareness among the public and industry on future water quality.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph18105248