Interfacial piezoelectric polarization locking in printable Ti3C2Tx MXene-fluoropolymer composites

Piezoelectric fluoropolymers convert mechanical energy to electricity and are ideal for sustainably providing power to electronic devices. To convert mechanical energy, a net polarization must be induced in the fluoropolymer, which is currently achieved via an energy-intensive electrical poling proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-05, Vol.12 (1), p.3171-3171, Article 3171
Hauptverfasser: Shepelin, Nick A., Sherrell, Peter C., Skountzos, Emmanuel N., Goudeli, Eirini, Zhang, Jizhen, Lussini, Vanessa C., Imtiaz, Beenish, Usman, Ken Aldren S., Dicinoski, Greg W., Shapter, Joseph G., Razal, Joselito M., Ellis, Amanda V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Piezoelectric fluoropolymers convert mechanical energy to electricity and are ideal for sustainably providing power to electronic devices. To convert mechanical energy, a net polarization must be induced in the fluoropolymer, which is currently achieved via an energy-intensive electrical poling process. Eliminating this process will enable the low-energy production of efficient energy harvesters. Here, by combining molecular dynamics simulations, piezoresponse force microscopy, and electrodynamic measurements, we reveal a hitherto unseen polarization locking phenomena of poly(vinylidene fluoride– co –trifluoroethylene) (PVDF-TrFE) perpendicular to the basal plane of two-dimensional (2D) Ti 3 C 2 T x MXene nanosheets. This polarization locking, driven by strong electrostatic interactions enabled exceptional energy harvesting performance, with a measured piezoelectric charge coefficient, d 33 , of −52.0 picocoulombs per newton, significantly higher than electrically poled PVDF-TrFE (approximately −38 picocoulombs per newton). This study provides a new fundamental and low-energy input mechanism of poling fluoropolymers, which enables new levels of performance in electromechanical technologies. Fluoropolymers are state-of-the-art flexible piezoelectric materials, yet require massive energy inputs to function. Here, the authors show that the electrostatic field around a 2D material leads to polarization orientation and maximized piezoelectric performance, without external energy input.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-23341-3