Direct Conversion of Syngas to Light Olefins over a ZnCrOx + H-SSZ-13 Bifunctional Catalyst

In recent years, bifunctional catalysts for the syngas-to-olefins (STO) reaction via the oxide-zeolite (OX-ZEO) strategy has been intensively investigated. However, the bifunctional catalyst containing H-SSZ-13 with a 100% H+-exchanging degree for the STO reaction has not been developed because of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2021-04, Vol.6 (16), p.10953-10962
Hauptverfasser: Huang, Yuxuan, Ma, Hongfang, Xu, Zhiqiang, Qian, Weixin, Zhang, Haitao, Ying, Weiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, bifunctional catalysts for the syngas-to-olefins (STO) reaction via the oxide-zeolite (OX-ZEO) strategy has been intensively investigated. However, the bifunctional catalyst containing H-SSZ-13 with a 100% H+-exchanging degree for the STO reaction has not been developed because of the high selectivity to paraffin. Here, we report a ZnCrOx + H-SSZ-13 bifunctional catalyst, which contains the submicron H-SSZ-13 with adequate acidic strength. Light olefins in hydrocarbon reached 70.8% at a CO conversion of 20.9% over the ZnCrOx + H-SSZ-13(23S) bifunctional catalyst at 653 K, 1.0 MPa, and GHSV = 6000 mL.g(-1).h(-1) after 800 min of STO reaction. The effect of CO and H-2 on the C-C coupling was discussed by carrying out the methanol-to-olefins (MTO) reaction under a similar atmosphere as that of the STO reaction. H-2 and CO should play a more dominant role than the conventional hydrogen transfer reaction on the undesired high selectivity of paraffins. These findings provide new insight into the design of the bifunctional catalyst for the STO process via the OX-ZEO strategy.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.1c00751