Sevoflurane protects against ischemia-reperfusion injury in mice after total knee arthroplasty via facilitating RASD1-mediated protein kinase A pathway activation

This study aimed to explore effects of Sevoflurane on ischemia-reperfusion (I/R) injury after total knee arthroplasty (TKA). To explore potential molecular mechanism, Ras related dexamethasone induced 1 (RASD1), a Protein kinase A (PKA) activator, frequently associated with various models of I/R inj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging (Albany, NY.) NY.), 2021-05, Vol.13 (9), p.13333-13348
Hauptverfasser: Li, Tao, Han, Yangdong, Guo, Baofu, Chen, Peng, Wan, Yingchun, Ye, Baoguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to explore effects of Sevoflurane on ischemia-reperfusion (I/R) injury after total knee arthroplasty (TKA). To explore potential molecular mechanism, Ras related dexamethasone induced 1 (RASD1), a Protein kinase A (PKA) activator, frequently associated with various models of I/R injury, was also investigated. mouse models with I/R injury after TKA and cell models with I/R injury were induced. Contents of creatinine kinase (CK), lactic dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA), serum levels of inflammatory factors, expression of PKA pathway-related genes and cell proliferation and apoptosis were measured. RASD1 was altered and PKA pathway was inhibited in mice and cells to elucidate the involvement of RASD1 and PKA pathway in Sevoflurane treatment on I/R injury. RASD1 was upregulated in I/R injury after TKA. Sevoflurane treatment or silencing RASD1 reduced RASD1 expression, CK, LDH and MDA contents, inflammation, apoptosis, but increased proliferation, SOD content, cAMP expression, and extents of PKA and cAMP responsive element binding protein (CREB) phosphorylation in skeletal muscle cells of I/R injury. Additionally, PKA pathway activation potentiated the therapeutic effect of Sevoflurane on I/R injury after TKA. Altogether, Sevoflurane treatment confines I/R injury after TKA via RASD1-mediated PKA pathway activation.
ISSN:1945-4589
1945-4589
DOI:10.18632/aging.103899