Variable step-size evolving participatory learning with kernel recursive least squares applied to gas prices forecasting in Brazil

A prediction model is an indispensable tool in business, helping to make decisions, whether in the short, medium, or long term. In this context, the implementation of machine learning techniques in time series forecasting models has a notorious relevance, as information processing and efficient and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolving systems 2022-04, Vol.13 (2), p.297-306
Hauptverfasser: Queiroz, Eduardo Ravaglia Campos, Alves, Kaike Sa Teles Rocha, Cyrino Oliveira, Fernando Luiz, Pestana de Aguiar, Eduardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A prediction model is an indispensable tool in business, helping to make decisions, whether in the short, medium, or long term. In this context, the implementation of machine learning techniques in time series forecasting models has a notorious relevance, as information processing and efficient and dynamic knowledge uncovering are increasingly demanded. This paper develops a model called Variable step-size evolving Participatory Learning with Kernel Recursive Least Squares, VS-ePL-KRLS, applied to the forecast of weekly prices for S500 and S10 diesel oil, at the Brazilian level, for biweekly and monthly horizons. The presented model demonstrates a better accuracy compared with analogous models in the literature, without loss of computational performance for all time series analyzed.
ISSN:1868-6478
1868-6486
DOI:10.1007/s12530-021-09388-z