CodAn: predictive models for precise identification of coding regions in eukaryotic transcripts

Characterization of the coding sequences (CDSs) is an essential step in transcriptome annotation. Incorrect identification of CDSs can lead to the prediction of non-existent proteins that can eventually compromise knowledge if databases are populated with similar incorrect predictions made in differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2021-05, Vol.22 (3)
Hauptverfasser: Nachtigall, Pedro G, Kashiwabara, Andre Y, Durham, Alan M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Characterization of the coding sequences (CDSs) is an essential step in transcriptome annotation. Incorrect identification of CDSs can lead to the prediction of non-existent proteins that can eventually compromise knowledge if databases are populated with similar incorrect predictions made in different genomes. Also, the correct identification of CDSs is important for the characterization of the untranslated regions (UTRs), which are known to be important regulators of the mRNA translation process. Considering this, we present CodAn (Coding sequence Annotator), a new approach to predict confident CDS and UTR regions in full or partial transcriptome sequences in eukaryote species. Our analysis revealed that CodAn performs confident predictions on full-length and partial transcripts with the strand sense of the CDS known or unknown. The comparative analysis showed that CodAn presents better overall performance than other approaches, mainly when considering the correct identification of the full CDS (i.e. correct identification of the start and stop codons). In this sense, CodAn is the best tool to be used in projects involving transcriptomic data. CodAn is freely available at https://github.com/pedronachtigall/CodAn. aland@usp.br. Supplementary data are available at Briefings in Bioinformatics online.
ISSN:1467-5463
1477-4054
DOI:10.1093/bib/bbaa045