Design and Synthesis of Cathepsin-K-Activated Osteoadsorptive Fluorogenic Sentinel (OFS) Probes for Detecting Early Osteoclastic Bone Resorption in a Multiple Myeloma Mouse Model

We describe the design and synthesis of OFS-1, an Osteoadsorptive Fluorogenic Sentinel imaging probe that is adsorbed by hydroxyapatite (HAp) and bone mineral surfaces, where it generates an external fluorescent signal in response to osteoclast-secreted cathepsin K (Ctsk). The probe consists of a bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2021-05, Vol.32 (5), p.916-927
Hauptverfasser: Richard, Eric T, Morinaga, Kenzo, Zheng, Yiying, Sundberg, Oskar, Hokugo, Akishige, Hui, Kimberly, Zhou, Yipin, Sasaki, Hodaka, Kashemirov, Boris A, Nishimura, Ichiro, McKenna, Charles E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe the design and synthesis of OFS-1, an Osteoadsorptive Fluorogenic Sentinel imaging probe that is adsorbed by hydroxyapatite (HAp) and bone mineral surfaces, where it generates an external fluorescent signal in response to osteoclast-secreted cathepsin K (Ctsk). The probe consists of a bone-anchoring bisphosphonate moiety connected to a Förster resonance energy transfer (FRET) internally quenched fluorescent (IQF) dye pair, linked by a Ctsk peptide substrate, GHPGGPQG. Key structural features contributing to the effectiveness of OFS-1 were defined by structure–activity relationship (SAR) and modeling studies comparing OFS-1 with two cognates, OFS-2 and OFS-3. In solution or when preadsorbed on HAp, OFS-1 exhibited strong fluorescence when exposed to Ctsk (2.5–20 nM). Time-lapse photomicrographs obtained after seeding human osteoclasts onto HAp-coated well plates containing preadsorbed OFS-1 revealed bright fluorescence at the periphery of resorbing cells. OFS-1 administered systemically detected early osteolysis colocalized with orthotopic engraftment of RPMI-8226-Luc human multiple myeloma cells at a metastatic skeletal site in a humanized mouse model. OFS-1 is thus a promising new imaging tool for detecting abnormal bone resorption.
ISSN:1043-1802
1520-4812
1520-4812
DOI:10.1021/acs.bioconjchem.1c00036