Converging Evidence on D-Amino Acid Oxidase–Dependent Enhancement of Hippocampal Firing Activity and Passive Avoidance Learning in Rats

Abstract Background N-methyl-D-aspartate (NMDA) receptor activation requires the binding of a co-agonist on the glycine-binding site. D-serine is the main endogenous co-agonist of NMDA receptors, and its availability significantly depends on the activity of the metabolic enzyme D-amino acid oxidase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of neuropsychopharmacology 2021-05, Vol.24 (5), p.434-445
Hauptverfasser: Nagy, Lili Veronika, Bali, Zsolt Kristóf, Kapus, Gábor, Pelsőczi, Péter, Farkas, Bence, Lendvai, Balázs, Lévay, György, Hernádi, István
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background N-methyl-D-aspartate (NMDA) receptor activation requires the binding of a co-agonist on the glycine-binding site. D-serine is the main endogenous co-agonist of NMDA receptors, and its availability significantly depends on the activity of the metabolic enzyme D-amino acid oxidase (DAAO). Inhibition of DAAO increases the brain levels of D-serine and modulates a variety of physiological functions, including cognitive behavior. Methods Here, we examined the effects of a novel 4-hydroxypyridazin-3(2H)-one derivative DAAO inhibitor, Compound 30 (CPD30), on passive avoidance learning and on neuronal firing activity in rats. Results D-serine administration was applied as reference, which increased cognitive performance and enhanced hippocampal firing activity and responsiveness to NMDA after both local and systemic application. Similarly to D-serine, CPD30 (0.1 mg/kg) effectively reversed MK-801–induced memory impairment in the passive avoidance test. Furthermore, local iontophoretic application of CPD30 in the vicinity of hippocampal pyramidal neurons significantly increased firing rate and enhanced their responses to locally applied NMDA. CPD30 also enhanced hippocampal firing activity after systemic administration. In 0.1- to 1.0-mg/kg doses, CPD30 increased spontaneous and NMDA-evoked firing activity of the neurons. Effects of CPD30 on NMDA responsiveness emerged faster (at 10 minutes post-injection) when a 1.0-mg/kg dose was applied compared with the onset of the effects of 0.1 mg/kg CPD30 (at 30 minutes post-injection). Conclusions The present results confirm that the inhibition of DAAO enzyme is an effective strategy for cognitive enhancement. Our findings further facilitate the understanding of the cellular mechanisms underlying the behavioral effects of DAAO inhibition in the mammalian brain.
ISSN:1461-1457
1469-5111
DOI:10.1093/ijnp/pyaa095