Integrating Transcriptome and Coexpression Network Analyses to Characterize Salicylic Acid- and Jasmonic Acid-Related Genes in Tolerant Poplars Infected with Rust

Melampsora larici-populina causes serious poplar foliar diseases called rust worldwide. Salicylic acid (SA) and jasmonic acid (JA) are important phytohormones that are related to plant defence responses. To investigate the transcriptome profiles of SA- and JA-related genes involved in poplar rust in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-05, Vol.22 (9), p.5001, Article 5001
Hauptverfasser: Chen, Qiaoli, Zhang, Ruizhi, Li, Danlei, Wang, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Melampsora larici-populina causes serious poplar foliar diseases called rust worldwide. Salicylic acid (SA) and jasmonic acid (JA) are important phytohormones that are related to plant defence responses. To investigate the transcriptome profiles of SA- and JA-related genes involved in poplar rust interaction, two tolerant poplars and one intolerant poplar were selected for this study. Weighted gene coexpression network analysis (WGCNA) was applied to characterize the changes in the transcriptome profiles and contents of SA and JA after infection with the virulent E4 race of M. larici-populina. In response to infection with the E4 race of M. larici-populina, tolerant symptoms were correlated with the expression of genes related to SA and JA biosynthesis, the levels of SA and JA, and the expression of defence-related genes downstream of SA and JA. Tolerant poplars could promptly regulate the occurrence of defence responses by activating or inhibiting SA or JA pathways in a timely manner, including regulating the expression of genes related to programmed cell death, such as Kunitz-type trypsin inhibitor (KTI), to limit the growth of E4 and protect themselves. WGCNA suggested that KTI might be regulated by a Cytochrome P450 family (CYP) gene. Some CYPs should play an important role in both JA- and SA-related pathways. In contrast, in intolerant poplar, the inhibition of SA-related defence signalling through increasing JA levels in the early stage led to continued inhibition of a large number of plant-pathogen interaction-related and signalling-related genes, including NBS-LRRs, EDS1, NDR1, WRKYs, and PRs. Therefore, timely activation or inhibition of the SA or JA pathways is the key difference between tolerant and intolerant poplars.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22095001