Flow Simulation in the Upper Respiratory Tract of Two Obstructive Sleep Apnea Patients with Successful and Failed Surgery
Obstructive sleep apnea (OSA) is a common disorder which may need to be treated by the upper respiratory tract (URT) surgery. To increase the success rate of the URT surgery, it is crucial to understand the flow features in the URT models. In this work, the turbulent flow characteristics in four 3D...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2021-05, Vol.2021, p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Obstructive sleep apnea (OSA) is a common disorder which may need to be treated by the upper respiratory tract (URT) surgery. To increase the success rate of the URT surgery, it is crucial to understand the flow features in the URT models. In this work, the turbulent flow characteristics in four 3D anatomically accurate URT models reconstructed from two OSA subjects with successful and failed surgery are numerically studied by the large-eddy simulation (LES) and unsteady Reynolds-averaged Navier-Stokes (RANS). The features of velocity fields, pressure fields, and wall shear stress fields as well as the spectral analysis of wall shear stress between successful and failed surgery are explored. The results indicate that LES is capable of capturing flow patterns and flow oscillation and is effective for OSA surgery prediction. Even if the unsteady RANS can obtain the correct pressure drop across the airways, it may not be appropriate to be used for surgery prediction. Moreover, it is found that the quality of oscillating signal of wall shear stress is a key factor in surgery prediction. In a successful surgery, the wall shear stress oscillation is always strong, and the oscillating signal can perform a dominant frequency near 3~5 Hz, while in a failed surgery it does not show this clear intrinsic property. The results not only will gain new insights in the URT surgical planning but also will improve the prediction of surgical outcome for OSA patients. |
---|---|
ISSN: | 1748-670X 1748-6718 |
DOI: | 10.1155/2021/6683828 |