Improved barnacles mating optimizer algorithm for feature selection and support vector machine optimization

With the rapid development of computer technology, data collection becomes easier, and data object presents more complex. Data analysis method based on machine learning is an important, active, and multi-disciplinarily research field. Support vector machine (SVM) is one of the most powerful and fast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern analysis and applications : PAA 2021, Vol.24 (3), p.1249-1274
Hauptverfasser: Jia, Heming, Sun, Kangjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the rapid development of computer technology, data collection becomes easier, and data object presents more complex. Data analysis method based on machine learning is an important, active, and multi-disciplinarily research field. Support vector machine (SVM) is one of the most powerful and fast classification models. The main challenges SVM faces are the selection of feature subset and the setting of kernel parameters. To improve the performance of SVM, a metaheuristic algorithm is used to optimize them simultaneously. This paper first proposes a novel classification model called IBMO-SVM, which hybridizes an improved barnacle mating optimizer (IBMO) with SVM. Three strategies, including Gaussian mutation, logistic model, and refraction-learning, are used to improve the performance of BMO from different perspectives. Through 23 classical benchmark functions, the impact of control parameters and the effectiveness of introduced strategies are analyzed. The convergence accuracy and stability are the main gains, and exploration and exploitation phases are more properly balanced. We apply IBMO-SVM to 20 real-world datasets, including 4 extremely high-dimensional datasets. Experimental results are compared with 6 state-of-the-art methods in the literature. The final statistical results show that the proposed IBMO-SVM achieves a better performance than the standard BMO-SVM and other compared methods, especially on high-dimensional datasets. In addition, the proposed model also shows significant superiority compared with 4 other classifiers.
ISSN:1433-7541
1433-755X
DOI:10.1007/s10044-021-00985-x