Coupling hot melt extrusion and fused deposition modeling: Critical properties for successful performance
[Display omitted] Interest in 3D printing for pharmaceutical applications has increased in recent years. Compared to other 3D printing techniques, hot melt extrusion (HME)-based fused deposition modeling (FDM) 3D printing has been the most extensively investigated for patient-focused dosage. HME tec...
Gespeichert in:
Veröffentlicht in: | Advanced drug delivery reviews 2021-05, Vol.172, p.52-63 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Interest in 3D printing for pharmaceutical applications has increased in recent years. Compared to other 3D printing techniques, hot melt extrusion (HME)-based fused deposition modeling (FDM) 3D printing has been the most extensively investigated for patient-focused dosage. HME technology can be coupled with FDM 3D printing as a continuous manufacturing process. However, the crucial pharmaceutical polymers, formulation and process parameters must be investigated to establish HME-coupled FDM 3D printing. These advancements will lead the way towards developing continuous drug delivery systems for personalized therapy. This brief overview classifies pharmaceutical additive manufacturing, Hot Melt Extrusion, and Fused Deposition Modeling 3D printing techniques with a focus on coupling HME and FDM 3D printing processes. It also provides insights on the critical material properties, process and equipment parameters and limitations of successful HME-coupled FDM systems. |
---|---|
ISSN: | 0169-409X 1872-8294 |
DOI: | 10.1016/j.addr.2021.02.006 |