Tracking adoptive T cell immunotherapy using magnetic particle imaging

Adoptive cellular therapy (ACT) is a potent strategy to boost the immune response against cancer. ACT is effective against blood cancers but faces challenges in treating solid tumors. A critical step for the success of ACT immunotherapy is to achieve efficient trafficking and persistence of T cells...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotheranostics (Sydney, NSW) NSW), 2021, Vol.5 (4), p.431-444
Hauptverfasser: Rivera-Rodriguez, Angelie, Hoang-Minh, Lan B, Chiu-Lam, Andreina, Sarna, Nicole, Marrero-Morales, Leyda, Mitchell, Duane A, Rinaldi-Ramos, Carlos M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adoptive cellular therapy (ACT) is a potent strategy to boost the immune response against cancer. ACT is effective against blood cancers but faces challenges in treating solid tumors. A critical step for the success of ACT immunotherapy is to achieve efficient trafficking and persistence of T cells to solid tumors. Non-invasive tracking of the accumulation of adoptively transferred T cells to tumors would greatly accelerate development of more effective ACT strategies. We demonstrate the use of magnetic particle imaging (MPI) to non-invasively track ACT T cells in a mouse model of brain cancer. Magnetic labeling did not impair primary tumor-specific T cells and MPI allowed the detection of labeled T cells in the brain after intravenous or intracerebroventricular administration. These results support the use of MPI to track adoptively transferred T cells and accelerate the development of ACT treatments for brain tumors and other cancers.
ISSN:2206-7418
2206-7418
DOI:10.7150/ntno.55165