Ipsilateral motor pathways to the lower limb after stroke: Insights and opportunities

Stroke‐related damage to the crossed lateral corticospinal tract causes motor deficits in the contralateral (paretic) limb. To restore functional movement in the paretic limb, the nervous system may increase its reliance on ipsilaterally descending motor pathways, including the uncrossed lateral cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience research 2021-06, Vol.99 (6), p.1565-1578
Hauptverfasser: Cleland, Brice T., Madhavan, Sangeetha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stroke‐related damage to the crossed lateral corticospinal tract causes motor deficits in the contralateral (paretic) limb. To restore functional movement in the paretic limb, the nervous system may increase its reliance on ipsilaterally descending motor pathways, including the uncrossed lateral corticospinal tract, the reticulospinal tract, the rubrospinal tract, and the vestibulospinal tract. Our knowledge about the role of these pathways for upper limb motor recovery is incomplete, and even less is known about the role of these pathways for lower limb motor recovery. Understanding the role of ipsilateral motor pathways to paretic lower limb movement and recovery after stroke may help improve our rehabilitative efforts and provide alternate solutions to address stroke‐related impairments. These advances are important because walking and mobility impairments are major contributors to long‐term disability after stroke, and improving walking is a high priority for individuals with stroke. This perspective highlights evidence regarding the contributions of ipsilateral motor pathways from the contralesional hemisphere and spinal interneuronal pathways for paretic lower limb movement and recovery. This perspective also identifies opportunities for future research to expand our knowledge about ipsilateral motor pathways and provides insights into how this information may be used to guide rehabilitation.
ISSN:0360-4012
1097-4547
DOI:10.1002/jnr.24822