Father absence, age at menarche, and genetic confounding: A replication and extension using a polygenic score

Father absence has a small but robust association with earlier age at menarche (AAM), likely reflecting both genetic confounding and an environmental influence on life history strategy development. Studies that have attempted to disambiguate genetic versus environmental contributions to this associa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development and psychopathology 2022-02, Vol.34 (1), p.355-366
Hauptverfasser: Schlomer, Gabriel L., Marceau, Kristine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Father absence has a small but robust association with earlier age at menarche (AAM), likely reflecting both genetic confounding and an environmental influence on life history strategy development. Studies that have attempted to disambiguate genetic versus environmental contributions to this association have shown conflicting findings, though genomic-based studies have begun to establish the role of gene–environment interplay in the father absence/AAM literature. The purpose of this study was to replicate and extend prior genomic work using the Avon Longitudinal Study of Parents and Children (ALSPAC), a prospective longitudinal cohort study (N = 2,685), by (a) testing if an AAM polygenic score (PGS) could account for the father absence/AAM association, (b) replicating G×E research on lin-28 homolog B (LIN28B) variation and father absence, and (c) testing the G×E hypothesis using the PGS. Results showed that the PGS could not explain the father absence/AAM association and there was no interaction between father absence and the PGS. Findings using LIN28B largely replicated prior work that showed LIN28B variants predicted later AAM in father-present girls, but this AAM-delaying effect was absent or reversed in father-absent girls. Findings are discussed in terms genetic confounding, the unique biological role of LIN28B, and using PGSs for G×E tests.
ISSN:0954-5794
1469-2198
DOI:10.1017/S0954579420000929