Laboratory Investigation and Numerical Modelling of Concrete Reinforced with Recycled Steel Fibers

In the last decades, fiber reinforced concrete have emerged as the possible key to revolutionize civil engineering. Among different types of fibers employed in concrete technology to date, the application of recycled steel fibers produced from end-of-life car tires appears to be a viable approach to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-04, Vol.14 (8), p.1828
Hauptverfasser: Pająk, Małgorzata, Krystek, Małgorzata, Zakrzewski, Mateusz, Domski, Jacek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the last decades, fiber reinforced concrete have emerged as the possible key to revolutionize civil engineering. Among different types of fibers employed in concrete technology to date, the application of recycled steel fibers produced from end-of-life car tires appears to be a viable approach towards environmentally friendly construction. In this study, we demonstrate the laboratory research and numerical analysis of concrete reinforced with waste steel fibers recovered during the recycling process of end-of-life car tires. Concrete mixes with the following fiber contents: 0.5%, 0.75%, 1.0%, 1.25%, and 1.5% per volume were prepared and then tested in three-point bending conditions. The laboratory investigation revealed highly boosted properties of concrete under flexure. We further performed the finite element method (FEM) analysis of 2D models using Atena software in order to develop a material model allowing the numerical modelling of recycled steel fibers reinforced concrete (RSFRC) behavior. The parameters of RSFRC material model have been modified using the inverse analysis until matching the experimental performance of the material. The results, being in good agreement with the laboratory investigation, have indicated a high potential of RSFRC for real scale construction applications.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14081828