Multi-Layer Picture of Neurodegenerative Diseases: Lessons from the Use of Big Data through Artificial Intelligence

In the big data era, artificial intelligence techniques have been applied to tackle traditional issues in the study of neurodegenerative diseases. Despite the progress made in understanding the complex (epi)genetics signatures underlying neurodegenerative disorders, performing early diagnosis and de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of personalized medicine 2021-04, Vol.11 (4), p.280
Hauptverfasser: Termine, Andrea, Fabrizio, Carlo, Strafella, Claudia, Caputo, Valerio, Petrosini, Laura, Caltagirone, Carlo, Giardina, Emiliano, Cascella, Raffaella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the big data era, artificial intelligence techniques have been applied to tackle traditional issues in the study of neurodegenerative diseases. Despite the progress made in understanding the complex (epi)genetics signatures underlying neurodegenerative disorders, performing early diagnosis and developing drug repurposing strategies remain serious challenges for such conditions. In this context, the integration of multi-omics, neuroimaging, and electronic health records data can be exploited using deep learning methods to provide the most accurate representation of patients possible. Deep learning allows researchers to find multi-modal biomarkers to develop more effective and personalized treatments, early diagnosis tools, as well as useful information for drug discovering and repurposing in neurodegenerative pathologies. In this review, we will describe how relevant studies have been able to demonstrate the potential of deep learning to enhance the knowledge of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases through the integration of all sources of biomedical data.
ISSN:2075-4426
2075-4426
DOI:10.3390/jpm11040280