Integrated neurophotonics: Towards dense volumetric interrogation of brain circuit activity – at depth and in real time
We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach integrated neurophotonics; it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. Th...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2020-10, Vol.108 (1), p.66-92 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92 |
---|---|
container_issue | 1 |
container_start_page | 66 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 108 |
creator | Moreaux, Laurent C. Yatsenko, Dimitri Sacher, Wesley D. Choi, Jaebin Lee, Changhyuk Kubat, Nicole J. Cotton, R. James Boyden, Edward S. Lin, Michael Z. Tian, Lin Tolias, Andreas S. Poon, Joyce K.S. Shepard, Kenneth L. Roukes, Michael L. |
description | We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach
integrated neurophotonics;
it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. This approach has the potential to enable lens-less functional imaging
from within the brain itself
- to achieve dense, large-scale stimulation and recording of brain activity with cellular resolution at arbitrary depths. We perform a computational study of several prototype 3D architectures for implantable probe-array modules that are designed to provide fast and dense single-cell resolution,
e.g.,
within a 1-mm
3
volume of mouse cortex comprising ~100,000 neurons. We describe progress toward realizing integrated neurophotonic imaging modules, which can be produced
en masse
with current semiconductor foundry protocols for chip manufacturing. Implantation of multiple modules can cover extended brain regions. |
doi_str_mv | 10.1016/j.neuron.2020.09.043 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8061790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_8061790</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_80617903</originalsourceid><addsrcrecordid>eNqlzL1OhEAUhuGJ0bjrzx1YnBsAzwALjIWN0Wi_PZkdZuFsYIYcBgyd9-AdeiUSY2Nt9RVfnleIO4mxRJnfn2JnJ_YuTjDBGFWMWXomthJVEWVSqXOxxVLlUZ4U6UZcjeMJUWY7JS_FJk1xVxZ5sRXLmwu2YR1sDT-9ofXBOzLjA-z9u-Z6hNq60cLsu6m3gckArYbZNzqQd-CPcGBNDgyxmSiANoFmCgt8fXyCDqsfQgva1SsEtrqDQL29ERdH3Y329nevxePL8_7pNRqmQ29rY11g3VUDU695qbym6u_jqK0aP1cl5rJQmP478A0i1XE6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrated neurophotonics: Towards dense volumetric interrogation of brain circuit activity – at depth and in real time</title><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Moreaux, Laurent C. ; Yatsenko, Dimitri ; Sacher, Wesley D. ; Choi, Jaebin ; Lee, Changhyuk ; Kubat, Nicole J. ; Cotton, R. James ; Boyden, Edward S. ; Lin, Michael Z. ; Tian, Lin ; Tolias, Andreas S. ; Poon, Joyce K.S. ; Shepard, Kenneth L. ; Roukes, Michael L.</creator><creatorcontrib>Moreaux, Laurent C. ; Yatsenko, Dimitri ; Sacher, Wesley D. ; Choi, Jaebin ; Lee, Changhyuk ; Kubat, Nicole J. ; Cotton, R. James ; Boyden, Edward S. ; Lin, Michael Z. ; Tian, Lin ; Tolias, Andreas S. ; Poon, Joyce K.S. ; Shepard, Kenneth L. ; Roukes, Michael L.</creatorcontrib><description>We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach
integrated neurophotonics;
it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. This approach has the potential to enable lens-less functional imaging
from within the brain itself
- to achieve dense, large-scale stimulation and recording of brain activity with cellular resolution at arbitrary depths. We perform a computational study of several prototype 3D architectures for implantable probe-array modules that are designed to provide fast and dense single-cell resolution,
e.g.,
within a 1-mm
3
volume of mouse cortex comprising ~100,000 neurons. We describe progress toward realizing integrated neurophotonic imaging modules, which can be produced
en masse
with current semiconductor foundry protocols for chip manufacturing. Implantation of multiple modules can cover extended brain regions.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2020.09.043</identifier><identifier>PMID: 33058767</identifier><language>eng</language><ispartof>Neuron (Cambridge, Mass.), 2020-10, Vol.108 (1), p.66-92</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids></links><search><creatorcontrib>Moreaux, Laurent C.</creatorcontrib><creatorcontrib>Yatsenko, Dimitri</creatorcontrib><creatorcontrib>Sacher, Wesley D.</creatorcontrib><creatorcontrib>Choi, Jaebin</creatorcontrib><creatorcontrib>Lee, Changhyuk</creatorcontrib><creatorcontrib>Kubat, Nicole J.</creatorcontrib><creatorcontrib>Cotton, R. James</creatorcontrib><creatorcontrib>Boyden, Edward S.</creatorcontrib><creatorcontrib>Lin, Michael Z.</creatorcontrib><creatorcontrib>Tian, Lin</creatorcontrib><creatorcontrib>Tolias, Andreas S.</creatorcontrib><creatorcontrib>Poon, Joyce K.S.</creatorcontrib><creatorcontrib>Shepard, Kenneth L.</creatorcontrib><creatorcontrib>Roukes, Michael L.</creatorcontrib><title>Integrated neurophotonics: Towards dense volumetric interrogation of brain circuit activity – at depth and in real time</title><title>Neuron (Cambridge, Mass.)</title><description>We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach
integrated neurophotonics;
it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. This approach has the potential to enable lens-less functional imaging
from within the brain itself
- to achieve dense, large-scale stimulation and recording of brain activity with cellular resolution at arbitrary depths. We perform a computational study of several prototype 3D architectures for implantable probe-array modules that are designed to provide fast and dense single-cell resolution,
e.g.,
within a 1-mm
3
volume of mouse cortex comprising ~100,000 neurons. We describe progress toward realizing integrated neurophotonic imaging modules, which can be produced
en masse
with current semiconductor foundry protocols for chip manufacturing. Implantation of multiple modules can cover extended brain regions.</description><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqlzL1OhEAUhuGJ0bjrzx1YnBsAzwALjIWN0Wi_PZkdZuFsYIYcBgyd9-AdeiUSY2Nt9RVfnleIO4mxRJnfn2JnJ_YuTjDBGFWMWXomthJVEWVSqXOxxVLlUZ4U6UZcjeMJUWY7JS_FJk1xVxZ5sRXLmwu2YR1sDT-9ofXBOzLjA-z9u-Z6hNq60cLsu6m3gckArYbZNzqQd-CPcGBNDgyxmSiANoFmCgt8fXyCDqsfQgva1SsEtrqDQL29ERdH3Y329nevxePL8_7pNRqmQ29rY11g3VUDU695qbym6u_jqK0aP1cl5rJQmP478A0i1XE6</recordid><startdate>20201014</startdate><enddate>20201014</enddate><creator>Moreaux, Laurent C.</creator><creator>Yatsenko, Dimitri</creator><creator>Sacher, Wesley D.</creator><creator>Choi, Jaebin</creator><creator>Lee, Changhyuk</creator><creator>Kubat, Nicole J.</creator><creator>Cotton, R. James</creator><creator>Boyden, Edward S.</creator><creator>Lin, Michael Z.</creator><creator>Tian, Lin</creator><creator>Tolias, Andreas S.</creator><creator>Poon, Joyce K.S.</creator><creator>Shepard, Kenneth L.</creator><creator>Roukes, Michael L.</creator><scope>5PM</scope></search><sort><creationdate>20201014</creationdate><title>Integrated neurophotonics: Towards dense volumetric interrogation of brain circuit activity – at depth and in real time</title><author>Moreaux, Laurent C. ; Yatsenko, Dimitri ; Sacher, Wesley D. ; Choi, Jaebin ; Lee, Changhyuk ; Kubat, Nicole J. ; Cotton, R. James ; Boyden, Edward S. ; Lin, Michael Z. ; Tian, Lin ; Tolias, Andreas S. ; Poon, Joyce K.S. ; Shepard, Kenneth L. ; Roukes, Michael L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_80617903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreaux, Laurent C.</creatorcontrib><creatorcontrib>Yatsenko, Dimitri</creatorcontrib><creatorcontrib>Sacher, Wesley D.</creatorcontrib><creatorcontrib>Choi, Jaebin</creatorcontrib><creatorcontrib>Lee, Changhyuk</creatorcontrib><creatorcontrib>Kubat, Nicole J.</creatorcontrib><creatorcontrib>Cotton, R. James</creatorcontrib><creatorcontrib>Boyden, Edward S.</creatorcontrib><creatorcontrib>Lin, Michael Z.</creatorcontrib><creatorcontrib>Tian, Lin</creatorcontrib><creatorcontrib>Tolias, Andreas S.</creatorcontrib><creatorcontrib>Poon, Joyce K.S.</creatorcontrib><creatorcontrib>Shepard, Kenneth L.</creatorcontrib><creatorcontrib>Roukes, Michael L.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreaux, Laurent C.</au><au>Yatsenko, Dimitri</au><au>Sacher, Wesley D.</au><au>Choi, Jaebin</au><au>Lee, Changhyuk</au><au>Kubat, Nicole J.</au><au>Cotton, R. James</au><au>Boyden, Edward S.</au><au>Lin, Michael Z.</au><au>Tian, Lin</au><au>Tolias, Andreas S.</au><au>Poon, Joyce K.S.</au><au>Shepard, Kenneth L.</au><au>Roukes, Michael L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated neurophotonics: Towards dense volumetric interrogation of brain circuit activity – at depth and in real time</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><date>2020-10-14</date><risdate>2020</risdate><volume>108</volume><issue>1</issue><spage>66</spage><epage>92</epage><pages>66-92</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach
integrated neurophotonics;
it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. This approach has the potential to enable lens-less functional imaging
from within the brain itself
- to achieve dense, large-scale stimulation and recording of brain activity with cellular resolution at arbitrary depths. We perform a computational study of several prototype 3D architectures for implantable probe-array modules that are designed to provide fast and dense single-cell resolution,
e.g.,
within a 1-mm
3
volume of mouse cortex comprising ~100,000 neurons. We describe progress toward realizing integrated neurophotonic imaging modules, which can be produced
en masse
with current semiconductor foundry protocols for chip manufacturing. Implantation of multiple modules can cover extended brain regions.</abstract><pmid>33058767</pmid><doi>10.1016/j.neuron.2020.09.043</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2020-10, Vol.108 (1), p.66-92 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8061790 |
source | Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Integrated neurophotonics: Towards dense volumetric interrogation of brain circuit activity – at depth and in real time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20neurophotonics:%20Towards%20dense%20volumetric%20interrogation%20of%20brain%20circuit%20activity%20%E2%80%93%20at%20depth%20and%20in%20real%20time&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Moreaux,%20Laurent%20C.&rft.date=2020-10-14&rft.volume=108&rft.issue=1&rft.spage=66&rft.epage=92&rft.pages=66-92&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2020.09.043&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_8061790%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33058767&rfr_iscdi=true |