Integrated neurophotonics: Towards dense volumetric interrogation of brain circuit activity – at depth and in real time

We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach integrated neurophotonics; it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2020-10, Vol.108 (1), p.66-92
Hauptverfasser: Moreaux, Laurent C., Yatsenko, Dimitri, Sacher, Wesley D., Choi, Jaebin, Lee, Changhyuk, Kubat, Nicole J., Cotton, R. James, Boyden, Edward S., Lin, Michael Z., Tian, Lin, Tolias, Andreas S., Poon, Joyce K.S., Shepard, Kenneth L., Roukes, Michael L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue 1
container_start_page 66
container_title Neuron (Cambridge, Mass.)
container_volume 108
creator Moreaux, Laurent C.
Yatsenko, Dimitri
Sacher, Wesley D.
Choi, Jaebin
Lee, Changhyuk
Kubat, Nicole J.
Cotton, R. James
Boyden, Edward S.
Lin, Michael Z.
Tian, Lin
Tolias, Andreas S.
Poon, Joyce K.S.
Shepard, Kenneth L.
Roukes, Michael L.
description We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach integrated neurophotonics; it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. This approach has the potential to enable lens-less functional imaging from within the brain itself - to achieve dense, large-scale stimulation and recording of brain activity with cellular resolution at arbitrary depths. We perform a computational study of several prototype 3D architectures for implantable probe-array modules that are designed to provide fast and dense single-cell resolution, e.g., within a 1-mm 3 volume of mouse cortex comprising ~100,000 neurons. We describe progress toward realizing integrated neurophotonic imaging modules, which can be produced en masse with current semiconductor foundry protocols for chip manufacturing. Implantation of multiple modules can cover extended brain regions.
doi_str_mv 10.1016/j.neuron.2020.09.043
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8061790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_8061790</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_80617903</originalsourceid><addsrcrecordid>eNqlzL1OhEAUhuGJ0bjrzx1YnBsAzwALjIWN0Wi_PZkdZuFsYIYcBgyd9-AdeiUSY2Nt9RVfnleIO4mxRJnfn2JnJ_YuTjDBGFWMWXomthJVEWVSqXOxxVLlUZ4U6UZcjeMJUWY7JS_FJk1xVxZ5sRXLmwu2YR1sDT-9ofXBOzLjA-z9u-Z6hNq60cLsu6m3gckArYbZNzqQd-CPcGBNDgyxmSiANoFmCgt8fXyCDqsfQgva1SsEtrqDQL29ERdH3Y329nevxePL8_7pNRqmQ29rY11g3VUDU695qbym6u_jqK0aP1cl5rJQmP478A0i1XE6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrated neurophotonics: Towards dense volumetric interrogation of brain circuit activity – at depth and in real time</title><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Moreaux, Laurent C. ; Yatsenko, Dimitri ; Sacher, Wesley D. ; Choi, Jaebin ; Lee, Changhyuk ; Kubat, Nicole J. ; Cotton, R. James ; Boyden, Edward S. ; Lin, Michael Z. ; Tian, Lin ; Tolias, Andreas S. ; Poon, Joyce K.S. ; Shepard, Kenneth L. ; Roukes, Michael L.</creator><creatorcontrib>Moreaux, Laurent C. ; Yatsenko, Dimitri ; Sacher, Wesley D. ; Choi, Jaebin ; Lee, Changhyuk ; Kubat, Nicole J. ; Cotton, R. James ; Boyden, Edward S. ; Lin, Michael Z. ; Tian, Lin ; Tolias, Andreas S. ; Poon, Joyce K.S. ; Shepard, Kenneth L. ; Roukes, Michael L.</creatorcontrib><description>We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach integrated neurophotonics; it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. This approach has the potential to enable lens-less functional imaging from within the brain itself - to achieve dense, large-scale stimulation and recording of brain activity with cellular resolution at arbitrary depths. We perform a computational study of several prototype 3D architectures for implantable probe-array modules that are designed to provide fast and dense single-cell resolution, e.g., within a 1-mm 3 volume of mouse cortex comprising ~100,000 neurons. We describe progress toward realizing integrated neurophotonic imaging modules, which can be produced en masse with current semiconductor foundry protocols for chip manufacturing. Implantation of multiple modules can cover extended brain regions.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2020.09.043</identifier><identifier>PMID: 33058767</identifier><language>eng</language><ispartof>Neuron (Cambridge, Mass.), 2020-10, Vol.108 (1), p.66-92</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids></links><search><creatorcontrib>Moreaux, Laurent C.</creatorcontrib><creatorcontrib>Yatsenko, Dimitri</creatorcontrib><creatorcontrib>Sacher, Wesley D.</creatorcontrib><creatorcontrib>Choi, Jaebin</creatorcontrib><creatorcontrib>Lee, Changhyuk</creatorcontrib><creatorcontrib>Kubat, Nicole J.</creatorcontrib><creatorcontrib>Cotton, R. James</creatorcontrib><creatorcontrib>Boyden, Edward S.</creatorcontrib><creatorcontrib>Lin, Michael Z.</creatorcontrib><creatorcontrib>Tian, Lin</creatorcontrib><creatorcontrib>Tolias, Andreas S.</creatorcontrib><creatorcontrib>Poon, Joyce K.S.</creatorcontrib><creatorcontrib>Shepard, Kenneth L.</creatorcontrib><creatorcontrib>Roukes, Michael L.</creatorcontrib><title>Integrated neurophotonics: Towards dense volumetric interrogation of brain circuit activity – at depth and in real time</title><title>Neuron (Cambridge, Mass.)</title><description>We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach integrated neurophotonics; it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. This approach has the potential to enable lens-less functional imaging from within the brain itself - to achieve dense, large-scale stimulation and recording of brain activity with cellular resolution at arbitrary depths. We perform a computational study of several prototype 3D architectures for implantable probe-array modules that are designed to provide fast and dense single-cell resolution, e.g., within a 1-mm 3 volume of mouse cortex comprising ~100,000 neurons. We describe progress toward realizing integrated neurophotonic imaging modules, which can be produced en masse with current semiconductor foundry protocols for chip manufacturing. Implantation of multiple modules can cover extended brain regions.</description><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqlzL1OhEAUhuGJ0bjrzx1YnBsAzwALjIWN0Wi_PZkdZuFsYIYcBgyd9-AdeiUSY2Nt9RVfnleIO4mxRJnfn2JnJ_YuTjDBGFWMWXomthJVEWVSqXOxxVLlUZ4U6UZcjeMJUWY7JS_FJk1xVxZ5sRXLmwu2YR1sDT-9ofXBOzLjA-z9u-Z6hNq60cLsu6m3gckArYbZNzqQd-CPcGBNDgyxmSiANoFmCgt8fXyCDqsfQgva1SsEtrqDQL29ERdH3Y329nevxePL8_7pNRqmQ29rY11g3VUDU695qbym6u_jqK0aP1cl5rJQmP478A0i1XE6</recordid><startdate>20201014</startdate><enddate>20201014</enddate><creator>Moreaux, Laurent C.</creator><creator>Yatsenko, Dimitri</creator><creator>Sacher, Wesley D.</creator><creator>Choi, Jaebin</creator><creator>Lee, Changhyuk</creator><creator>Kubat, Nicole J.</creator><creator>Cotton, R. James</creator><creator>Boyden, Edward S.</creator><creator>Lin, Michael Z.</creator><creator>Tian, Lin</creator><creator>Tolias, Andreas S.</creator><creator>Poon, Joyce K.S.</creator><creator>Shepard, Kenneth L.</creator><creator>Roukes, Michael L.</creator><scope>5PM</scope></search><sort><creationdate>20201014</creationdate><title>Integrated neurophotonics: Towards dense volumetric interrogation of brain circuit activity – at depth and in real time</title><author>Moreaux, Laurent C. ; Yatsenko, Dimitri ; Sacher, Wesley D. ; Choi, Jaebin ; Lee, Changhyuk ; Kubat, Nicole J. ; Cotton, R. James ; Boyden, Edward S. ; Lin, Michael Z. ; Tian, Lin ; Tolias, Andreas S. ; Poon, Joyce K.S. ; Shepard, Kenneth L. ; Roukes, Michael L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_80617903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreaux, Laurent C.</creatorcontrib><creatorcontrib>Yatsenko, Dimitri</creatorcontrib><creatorcontrib>Sacher, Wesley D.</creatorcontrib><creatorcontrib>Choi, Jaebin</creatorcontrib><creatorcontrib>Lee, Changhyuk</creatorcontrib><creatorcontrib>Kubat, Nicole J.</creatorcontrib><creatorcontrib>Cotton, R. James</creatorcontrib><creatorcontrib>Boyden, Edward S.</creatorcontrib><creatorcontrib>Lin, Michael Z.</creatorcontrib><creatorcontrib>Tian, Lin</creatorcontrib><creatorcontrib>Tolias, Andreas S.</creatorcontrib><creatorcontrib>Poon, Joyce K.S.</creatorcontrib><creatorcontrib>Shepard, Kenneth L.</creatorcontrib><creatorcontrib>Roukes, Michael L.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreaux, Laurent C.</au><au>Yatsenko, Dimitri</au><au>Sacher, Wesley D.</au><au>Choi, Jaebin</au><au>Lee, Changhyuk</au><au>Kubat, Nicole J.</au><au>Cotton, R. James</au><au>Boyden, Edward S.</au><au>Lin, Michael Z.</au><au>Tian, Lin</au><au>Tolias, Andreas S.</au><au>Poon, Joyce K.S.</au><au>Shepard, Kenneth L.</au><au>Roukes, Michael L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated neurophotonics: Towards dense volumetric interrogation of brain circuit activity – at depth and in real time</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><date>2020-10-14</date><risdate>2020</risdate><volume>108</volume><issue>1</issue><spage>66</spage><epage>92</epage><pages>66-92</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach integrated neurophotonics; it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. This approach has the potential to enable lens-less functional imaging from within the brain itself - to achieve dense, large-scale stimulation and recording of brain activity with cellular resolution at arbitrary depths. We perform a computational study of several prototype 3D architectures for implantable probe-array modules that are designed to provide fast and dense single-cell resolution, e.g., within a 1-mm 3 volume of mouse cortex comprising ~100,000 neurons. We describe progress toward realizing integrated neurophotonic imaging modules, which can be produced en masse with current semiconductor foundry protocols for chip manufacturing. Implantation of multiple modules can cover extended brain regions.</abstract><pmid>33058767</pmid><doi>10.1016/j.neuron.2020.09.043</doi></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2020-10, Vol.108 (1), p.66-92
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8061790
source Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Integrated neurophotonics: Towards dense volumetric interrogation of brain circuit activity – at depth and in real time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20neurophotonics:%20Towards%20dense%20volumetric%20interrogation%20of%20brain%20circuit%20activity%20%E2%80%93%20at%20depth%20and%20in%20real%20time&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Moreaux,%20Laurent%20C.&rft.date=2020-10-14&rft.volume=108&rft.issue=1&rft.spage=66&rft.epage=92&rft.pages=66-92&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2020.09.043&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_8061790%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33058767&rfr_iscdi=true