Integrated neurophotonics: Towards dense volumetric interrogation of brain circuit activity – at depth and in real time

We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach integrated neurophotonics; it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2020-10, Vol.108 (1), p.66-92
Hauptverfasser: Moreaux, Laurent C., Yatsenko, Dimitri, Sacher, Wesley D., Choi, Jaebin, Lee, Changhyuk, Kubat, Nicole J., Cotton, R. James, Boyden, Edward S., Lin, Michael Z., Tian, Lin, Tolias, Andreas S., Poon, Joyce K.S., Shepard, Kenneth L., Roukes, Michael L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach integrated neurophotonics; it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. This approach has the potential to enable lens-less functional imaging from within the brain itself - to achieve dense, large-scale stimulation and recording of brain activity with cellular resolution at arbitrary depths. We perform a computational study of several prototype 3D architectures for implantable probe-array modules that are designed to provide fast and dense single-cell resolution, e.g., within a 1-mm 3 volume of mouse cortex comprising ~100,000 neurons. We describe progress toward realizing integrated neurophotonic imaging modules, which can be produced en masse with current semiconductor foundry protocols for chip manufacturing. Implantation of multiple modules can cover extended brain regions.
ISSN:0896-6273
1097-4199
DOI:10.1016/j.neuron.2020.09.043