DysRegSig: an R package for identifying gene dysregulations and building mechanistic signatures in cancer

Dysfunctional regulations of gene expression programs relevant to fundamental cell processes can drive carcinogenesis. Therefore, systematically identifying dysregulation events is an effective path for understanding carcinogenesis and provides insightful clues to build predictive signatures with me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2021-04, Vol.37 (3), p.429-430
Hauptverfasser: Li, Quanxue, Dai, Wentao, Liu, Jixiang, Sang, Qingqing, Li, Yi-Xue, Li, Yuan-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dysfunctional regulations of gene expression programs relevant to fundamental cell processes can drive carcinogenesis. Therefore, systematically identifying dysregulation events is an effective path for understanding carcinogenesis and provides insightful clues to build predictive signatures with mechanistic interpretability for cancer precision medicine. Here, we implemented a machine learning-based gene dysregulation analysis framework in an R package, DysRegSig, which is capable of exploring gene dysregulations from high-dimensional data and building mechanistic signature based on gene dysregulations. DysRegSig can serve as an easy-to-use tool to facilitate gene dysregulation analysis and follow-up analysis. The source code and user's guide of DysRegSig are freely available at Github: https://github.com/SCBIT-YYLab/DysRegSig. Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1367-4811
DOI:10.1093/bioinformatics/btaa688