PU.1 enforces quiescence and limits hematopoietic stem cell expansion during inflammatory stress

Hematopoietic stem cells (HSCs) are capable of entering the cell cycle to replenish the blood system in response to inflammatory cues; however, excessive proliferation in response to chronic inflammation can lead to either HSC attrition or expansion. The mechanism(s) that limit HSC proliferation and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of experimental medicine 2021-06, Vol.218 (6)
Hauptverfasser: Chavez, James S, Rabe, Jennifer L, Loeffler, Dirk, Higa, Kelly C, Hernandez, Giovanny, Mills, Taylor S, Ahmed, Nouraiz, Gessner, Rachel L, Ke, Zhonghe, Idler, Beau M, Niño, Katia E, Kim, Hyunmin, Myers, Jason R, Stevens, Brett M, Davizon-Castillo, Pavel, Jordan, Craig T, Nakajima, Hideaki, Ashton, John, Welner, Robert S, Schroeder, Timm, DeGregori, James, Pietras, Eric M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hematopoietic stem cells (HSCs) are capable of entering the cell cycle to replenish the blood system in response to inflammatory cues; however, excessive proliferation in response to chronic inflammation can lead to either HSC attrition or expansion. The mechanism(s) that limit HSC proliferation and expansion triggered by inflammatory signals are poorly defined. Here, we show that long-term HSCs (HSCLT) rapidly repress protein synthesis and cell cycle genes following treatment with the proinflammatory cytokine interleukin (IL)-1. This gene program is associated with activation of the transcription factor PU.1 and direct PU.1 binding at repressed target genes. Notably, PU.1 is required to repress cell cycle and protein synthesis genes, and IL-1 exposure triggers aberrant protein synthesis and cell cycle activity in PU.1-deficient HSCs. These features are associated with expansion of phenotypic PU.1-deficient HSCs. Thus, we identify a PU.1-dependent mechanism triggered by innate immune stimulation that limits HSC proliferation and pool size. These findings provide insight into how HSCs maintain homeostasis during inflammatory stress.
ISSN:0022-1007
1540-9538
DOI:10.1084/jem.20201169